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ARCH & GARCH

@ Stylized facts for stocks & exchang rate returns

@ The volatility of returns is not constant.
@ There is volatility persistence: high volatility periods and low volatility
periods = led to development of ARCH & GARCH.

@ ARCH = Autoregress Cconditional Heteroskedasticity
GARCH = Generalized ARCH
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Terminology

@ Unconditional Homoskedasticity = Constant variance. e.g.
Var(e) = 02 for all t.

@ Unconditional Heterokedasticity = Non-constant variance. e.g.

02, t<s
(722, t>s

Var(ey) = {

e Conditional Homoskedasticity = Constant conditional variance. e.g.
Var:(e¢11) = 02 for all t.

o Conditional Heterokedasticity = Non - constant conditional variance.
e.g.

02, et >0

Vart(stﬂ) = { 5

0-2y 8t§0
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Solving for the conditional variance (var;—1(y;) for an

ARMA(p,q))

@ It is easier than you think

_ P . . q . .
ye =0+ ) diye i+ ) Picei+ &
C R

— Vart_]_(yt) = Vart_1(€t> = Et_]_S% - (Et_]_gt)z = Et_1£% .
0

@ Conclusion: To model conditional variance of y; need only model
conditional variance of €; and this in turn means modeling Et,lef,
i.e. modeling €2
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The ARCH concept

@ We want to model the conditional mean of 2:

Ei 1 [Sﬂ =wag+a1e2 ;  (An autoregressive model for €2) (1)

@ Intuition: suppose ¢; is the (innovation of the) return on the TSE
index. When there is a large movement today (&2 large), this is
usually followed by large movement the next day (€2, large).

e.g. If stocks crashed yesterday, (e;—1 << 0), then today is unlikely
to be a calm day.
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How do we turn this into an explicit model for €2 ?

@ First Inclination: Additive error

€2 =g +a1e2 | +vi, vi ~ WN(0,02)

This satisfies (1) since it implies

2 2
Ei 167 = oo+ 1654

But: what if v; is large negative?

= could imply €2 < 0
= And, that's just not possible
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An explicit model for €2: second try

@ Second Try: Multiplicative Error
€F = vi (w0 + @€l 1) (3)

Et_]_Vt = 0, Et—lvt2 =1 (4)

o Now if xg > 0 and a3 > 0, this ensures &2 > 0.
e But, does £2 satisfy (1) ? Let’s check!

£ = v (o + a1ef_q)

Ej_-f]_E% = Etf]_ |:Vt2(0(0 + 0(18%71)]
= Ealvf] (w0 +aref )
———
=1 by assumption
= qg + 0618%_1

@ So, yes, (3) does satisfy (1)
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An explicit model for ¢2: second try Cont.

@ Although we may be more comfortable with additive error terms, the
multiplicative errors work better in this context.

o Note also that the assumptions of (4): E;—_1v: = 0 and E;_3 vt2 =1
imply that v; ~ WN(0,1).

@ Proof:

@ already shown in past lectures that E;_1v: = 0= E[v;| =0 &

cov(vt, veqj) = 0 for j # 0.
@ To show that E[v?] = 1, we have
EV} ] =EE._1v? =E[1] =1.
‘\/—/
=1

@ So, yes (3) does satisfy (1). Equation (3) is an ARCH(1) model.
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ARCH(q) Model

e ARCH(q) Model:

2 = v2(ro + Z?lex,-e%,,-) (5a)
E: 1vi=0and E;, 1v? =1 (5b)
«; >0, i=012..4q. (5¢)

Note that that the conditional heteroskedasticity is essentially

modelled by an autoregression in &2.

o Coefficient restrictions:
Note that €2 > 0. So the right hand side (RHS) of (5) cannot ever
imply €2 < 0.
This mandates (5¢).
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How is ARCH applied?

@ Can be applied directly, i.e.

q
ye=ee ee=wyfuo+ L ek

An e.g. might be an exchange rate return.
@ It can be applied to a series with a mean

_ . _ q 2
Vi = U+ e € = vt\/txo +) gl

An e.g. might be a stock return.

© It can be applied to describe the residual of a regression on ARMA
model

e.g.yt =uota1yi—1+ &

q
gy = vt\/oco + Zizla;s%_,

Etf]_Vt == 0, Etf]_Vt.2 = 1.
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How is ARCH applied? Cont.

@ So we can model & forecast both the conditional mean & the
conditional variance of the process, y;.

@ Recall that:

Vart,l(yt) = Etf]_[fﬂ%] == 0(0‘{‘27:18%_,'

@ When we considered the AR(1) before, we assumed &; ~ WN(0, 0?),
e Now we assume ¢; ~ ARCH(q)
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Is ARCH compatible with ARMA and WN Errors?

@ This begs the question: Is e, ~ ARCH(q) still also white noise?
@ To keep the algebra simple, let's work with g = 1,

er = vey/ (@0 +ared ;)

Et_]_Vt = 0, Et—lvt'2 =1.

@ We first show E;_1e; = 0:

Ei16r = Et—l{\’/?t \/ %o + 06153_1NR }
== Etf]_[vt] \/ &o + “18%_1
——

=0
=0.
@ Recall that E;_1e; = 0 implies both:
(i) E[e] =0 and
(i) cov(et, e¢4j) = 0 for j # 0.
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Is ARCH compatible with ARMA and WN Errors? cont.

o Next, calculate Var(e;) = E[¢2]:

Elel] = E[E.—1¢3]  Using L.LE.
= E[awo+aref 4]

= ao+w1E[e2 4]

So,
Ele}] = ao + a1 E[e_]
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Is ARCH compatible with ARMA and WN Errors? cont.

e Now use the lag operator to solve for E[e2]:!

E[e3] = wo+ai1LE[e?]
E[e3] —ai1LE[?] = ag
(1—a1L)E[e]] = wo
gl = (omb)
Xo
_ (1 — 061)
Xo

@ For the last step recall that the lag operator has no effect on the
constant

LIf we knew e¢ was stationary, we could set E[e3] = E[¢2_,] and solve for E[¢?]. But,
we haven't established yet whether ¢ is stationary.
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Is ARCH compatible with ARMA and WN Errors? cont.

@ So, for a3 < 1, we have established that e; ~ WN(O, lgl).

@ Note that this implies that &; is also covariance stationary.

@ And that y; will be covariance stationary under the usual condition
(e.g. ’0(1| < 1).

@ So we model the conditional variance ARCH and still model the
conditional mean in the same way as before.

@ Robert Engle introduced ARCH in a 1982 publication & was awarded
a Nobel prize in 2003.

Chaoyi Chen (BCE & MNB) ARCH and GARCH models 17 / 22



Forecasting with ARCH models

@ Consider buying stock at time t and selling at time t + 1.

If you are risk averse, you may care about the variance of the stock
return, say yii1.

But why use unconditional variance?
That would throw away all info you have about recent events.

e Use conditional variance instead: Var;(y:1) = E¢[€2.].

If e¢ ~ ARCH(q), then Var(yer1) = Eele3,1]) = a0+ X7_joie3, 4.

@ So estimate or forecast of Var(y+1) is

Vare(ye+1) = Qo+ Y7 Xi€ryq_;-
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How well did we predict Var(y:11)?

e How well did we predict Var(yit+1)?

@ The problem in answering this is that we don’t actually observe
Vare(yt+1). In econometric terminology, it's latent.

@ So we can't compare actual & predicted values to evaluate the
forecast.

@ On the other hand, ARCH also provides a prediction for €2, ; and
’s\fﬂ is observable. So we can compare observed values of € ; to
Et_]_E%, i.e.2

2 q 2
Et—18t+l = o+ Z,’:laietfi

’§ o~ q ~2
€ p1le = Ko + Zizltx,st,l.

@ In your forecast projects, you may consider using ARCH or GARCH to
forecast squared stock or exchange rate returns.

’Here 82t+1‘t denotes the time-t ARCH forecast of S%H, whereas #2 refers to the
fitted residual at time-t.
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Generalized ARCH (GARCH)

Et = Viq/ ht|t71
q p

hyje—1 = o + Zﬂéﬂ%_i + Eﬁiht—f|t—f—1
i=1 i=1

Ei 1vi =0

Et_]_ Vl'2 =1

e Equations (6a)-(6d) model &; as a GARCH(p,q).
@ From (6b) can see that hy,_; is known at time t — 1.

o Er 18 = Efth) \/ ht\t—l =0
0

———
C
2 _ 2 _
o 67 = (Et—th) ht|t71 = ht\tfl
—_——
1
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Generalized ARCH (GARCH) Cont.

) Vart 18t (Et 1€ ) (Et718t)2 = ht|t—1
H,_/ ——
ht\t—l 0

® hy,_1 is the conditional variance of &; and (6b) models it in the style
of an ARMA(p,q) model with AR components B;h,_jj;_;_1 and MA
components a;e2_;.

® hy,_q often just called "h;" because it is conditional variance of &;.
However, it is realized at time t — 1, because it is time t — 1
conditional variance. | use hy,_; to remind us of this.

e Can write it as generalization of ARCH by combining (6a) and (6b)

to get:

5% = Vtzht|t71 (7)

q p
— |ef = v (a0 + Z“isi—i + Z,Biht—i\t—i—l)
i=1 i-1
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GARCH and ARCH relation

e If B; =0, i=1,..,p, then (7) specializes to an ARCH(q)
— GARCH(0,q) = ARCH(q).

@ Advantage of GARCH over ARCH is similar to advantage of ARMA

over AR:
Parsimony: more flexible model with fewer parameters
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