ARCH and GARCH models (Updated Spring 2021)

CHAOYI CHEN Institute of MNB, Corvinus University of Budapest

Empirical Financial Econometrics

@copyright Chaoyi Chen (BCE & MNB) & Alex Maynard (U.of Guelph) 2015-2021. All rights reserved. For use by

registered students only. Please do not distribute without express written consent.

æ

- ARCH & GARCH introduction
- An explicit model for squared error
- ARCH(q) Model
- Forecasting with ARCH models
- Generalized ARCH (GARCH)

- Stylized facts for stocks & exchang rate returns
 - The volatility of returns is not constant.
 - ② There is volatility persistence: high volatility periods and low volatility periods ⇒ led to development of ARCH & GARCH.
- ARCH = <u>Autoregress</u> <u>C</u>conditional <u>H</u>eteroskedasticity GARCH = <u>G</u>eneralized <u>ARCH</u>

Terminology

- Unconditional Homoskedasticity = Constant variance. e.g. $\overline{Var(\varepsilon) = \sigma^2}$ for all t.
- Unconditional Heterokedasticity = \underline{Non} -constant variance. e.g.

$$Var(arepsilon_t) = egin{cases} \sigma_1^2, \ t < s \ \sigma_2^2, \ t \geq s \end{cases}$$

- Conditional Homoskedasticity = Constant conditional variance. e.g. $Var_t(\varepsilon_{t+1}) = \sigma^2$ for all t.
- Conditional Heterokedasticity = Non constant conditional variance. e.g.

$$Var_t(arepsilon_{t+1}) = egin{cases} \sigma_1^2, \ arepsilon_t > 0 \ \sigma_2^2, \ arepsilon_t \le 0 \ \sigma_2^2, \ arepsilon_t \le 0 \end{cases}$$

・ 何 ト ・ ヨ ト ・ ヨ ト ・

Solving for the conditional variance $(var_{t-1}(y_t)$ for an ARMA(p,q))

• It is easier than you think

$$y_{t} = \underbrace{\alpha_{0} + \sum_{i=1}^{p} \alpha_{i} y_{t-i} + \sum_{i=1}^{q} \beta_{i} \varepsilon_{t-i}}_{C} + \underbrace{\varepsilon_{t}}_{R}$$
$$\implies \boxed{Var_{t-1}(y_{t}) = Var_{t-1}(\varepsilon_{t}) = E_{t-1}\varepsilon_{t}^{2} - \underbrace{(E_{t-1}\varepsilon_{t})^{2}}_{0} = E_{t-1}\varepsilon_{t}^{2}}_{0}.$$

<u>Conclusion</u>: To model conditional variance of y_t need only model conditional variance of ε_t and this in turn means modeling E_{t-1}ε²_t, i.e. modeling ε²_t.

• We want to model the conditional mean of ε_t^2 :

 $E_{t-1}[\varepsilon_t^2] = \alpha_0 + \alpha_1 \varepsilon_{t-1}^2$ (An autoregressive model for ε_t^2) (1)

• <u>Intuition</u>: suppose ε_t is the (innovation of the) return on the TSE index. When there is a large movement today (ε_t^2 large), this is usually followed by large movement the next day (ε_{t+1}^2 large).

e.g. If stocks crashed yesterday, ($\varepsilon_{t-1} << 0$), then today is unlikely to be a calm day.

留下 くぼ下 くほう

How do we turn this into an explicit model for ε_t^2 ?

• First Inclination: Additive error

ł

$$\varepsilon_t^2 = \alpha_0 + \alpha_1 \varepsilon_{t-1}^2 + v_t, \ v_t \sim WN(0, \sigma_v^2)$$
(2)

This satisfies (1) since it implies

$$E_{t-1}\varepsilon_t^2 = \alpha_0 + \alpha_1\varepsilon_{t-1}^2$$

<u>But</u>: what if v_t is large negative? \implies could imply $\varepsilon_t^2 < 0$ \implies And, that's just not possible

.

An explicit model for ε_t^2 : second try

• Second Try: Multiplicative Error

$$\varepsilon_t^2 = v_t^2(\alpha_0 + \alpha_1 \varepsilon_{t-1}^2) \tag{3}$$

$$E_{t-1}v_t = 0, \ E_{t-1}v_t^2 = 1$$

Now if α₀ > 0 and α₁ ≥ 0, this ensures ε²_t > 0.
But, does ε²_t satisfy (1) ? Let's check!

$$\varepsilon_t^2 = v_t^2(\alpha_0 + \alpha_1 \varepsilon_{t-1}^2)$$

$$E_{t-1}\varepsilon_t^2 = E_{t-1} [v_t^2(\alpha_0 + \alpha_1 \varepsilon_{t-1}^2)]$$

= $\underbrace{E_{t-1}[v_t^2]}_{=1 \text{ by assumption}} (\alpha_0 + \alpha_1 \varepsilon_{t-1}^2)$
= $\alpha_0 + \alpha_1 \varepsilon_{t-1}^2$

• So, yes, (3) does satisfy (1)

(4)

- Although we may be more comfortable with additive error terms, the multiplicative errors work better in this context.
- Note also that the assumptions of (4): $E_{t-1}v_t = 0$ and $E_{t-1}v_t^2 = 1$ imply that $v_t \sim WN(0, 1)$.

Proof:

- already shown in past lectures that $E_{t-1}v_t = 0 \Longrightarrow E[v_t] = 0$ & $cov(v_t, v_{t+j}) = 0$ for $j \neq 0$.
- 2 To show that $E[v_t^2] = 1$, we have

$$E[v_t^2] = E\underbrace{E_{t-1}v_t^2}_{=1} = E[1] = 1.$$

• So, yes (3) does satisfy (1). Equation (3) is an ARCH(1) model.

A (1) < A (1) < A (1) </p>

• ARCH(q) Model:

$$\varepsilon_t^2 = \mathbf{v}_t^2(\alpha_0 + \sum_{i=1}^q \alpha_i \varepsilon_{t-i}^2)$$
(5a)

$$E_{t-1}v_t = 0 \text{ and } E_{t-1}v_t^2 = 1$$
 (5b)

$$\alpha_i \ge 0, \ i = 0, 1, 2, ..., q.$$
 (5c)

Note that the conditional heteroskedasticity is essentially modelled by an autoregression in ε_t^2 .

• <u>Coefficient restrictions</u>: Note that $\varepsilon_t^2 \ge 0$. So the right hand side (RHS) of (5) cannot ever imply $\varepsilon_t^2 < 0$. This mandates (5c).

How is ARCH applied?

Can be applied directly, i.e.

$$y_t = \varepsilon_t$$
 $\varepsilon_t = v_t \sqrt{\alpha_0 + \sum_{i=1}^q \alpha_i \varepsilon_{t-i}^2}.$

An e.g. might be an exchange rate return. 2 It can be applied to a series with a mean

$$y_t = \mu + \varepsilon_t;$$
 $\varepsilon_t = v_t \sqrt{\alpha_0 + \sum_{i=1}^q \alpha_i \varepsilon_{t-i}^2}.$

An e.g. might be a stock return.

It can be applied to describe the residual of a regression on ARMA model

e.g.
$$y_t = \alpha_0 + \alpha_1 y_{t-1} + \varepsilon_t$$

 $\varepsilon_t = v_t \sqrt{\alpha_0 + \sum_{i=1}^q \alpha_i \varepsilon_{t-i}^2}$
 $E_{t-1} v_t = 0; \ E_{t-1} v_t^2 = 1.$

- So we can model & forecast both the conditional mean & the conditional variance of the process, *y*_t.
- Recall that:

.

$$Var_{t-1}(y_t) = E_{t-1}[\varepsilon_t^2] = \alpha_0 + \sum_{i=1}^q \varepsilon_{t-i}^2$$

• When we considered the AR(1) before, we assumed $\varepsilon_t \sim WN(0, \sigma^2)$, • Now we assume $\varepsilon_t \sim ARCH(q)$

Is ARCH compatible with ARMA and WN Errors?

- This begs the question: Is $\varepsilon_t \sim ARCH(q)$ still also white noise?
- To keep the algebra simple, let's work with q = 1,

$$\varepsilon_t = v_t \sqrt{(\alpha_0 + \alpha_1 \varepsilon_{t-1}^2)}$$

$$E_{t-1}v_t = 0; \ E_{t-1}v_t^2 = 1.$$

• We first show $E_{t-1}\varepsilon_t = 0$:

$$E_{t-1}\varepsilon_t = E_{t-1} \{ \underbrace{v_t}_R \underbrace{\sqrt{\alpha_0 + \alpha_1 \varepsilon_{t-1}^2}_{R}}_{=0} \}$$
$$= \underbrace{E_{t-1}[v_t]}_{=0} \sqrt{\alpha_0 + \alpha_1 \varepsilon_{t-1}^2}_{=0}$$
$$= 0.$$

Q Recall that E_{t-1}ε_t = 0 implies both:
(i) E[ε_t] = 0 and
(ii) cov(ε_t, ε_{t+j}) = 0 for j ≠ 0.

Is ARCH compatible with ARMA and WN Errors? cont.

• Next, calculate $Var(\varepsilon_t) = E[\varepsilon_t^2]$:

$$E[\varepsilon_t^2] = E[E_{t-1}\varepsilon_t^2] \quad \text{Using L.I.E.}$$

= $E[\alpha_0 + \alpha_1\varepsilon_{t-1}^2]$
= $\alpha_0 + \alpha_1E[\varepsilon_{t-1}^2].$

So,

$$E[\varepsilon_t^2] = \alpha_0 + \alpha_1 E[\varepsilon_{t-1}^2]$$

Is ARCH compatible with ARMA and WN Errors? cont.

• Now use the lag operator to solve for $E[\varepsilon_t^2]$:¹

$$E[\varepsilon_t^2] = \alpha_0 + \alpha_1 L E[\varepsilon_t^2]$$

$$E[\varepsilon_t^2] - \alpha_1 L E[\varepsilon_t^2] = \alpha_0$$

$$(1 - \alpha_1 L) E[\varepsilon_t^2] = \alpha_0$$

$$E[\varepsilon_t^2] = \frac{(1 - \alpha_1 L)}{\alpha_0}$$

$$= \frac{(1 - \alpha_1)}{\alpha_0}$$

• For the last step recall that the lag operator has no effect on the constant

¹ If we knew ε_t was stationary, we could set $E[\varepsilon_t^2] = E[\varepsilon_{t-1}^2]$ and solve for $E[\varepsilon_t^2]$. But, we haven't established yet whether ε_t is stationary.

Is ARCH compatible with ARMA and WN Errors? cont.

- So, for $\alpha_1 < 1$, we have established that $\varepsilon_t \sim WN(0, \frac{\alpha_0}{1-\alpha_1})$.
- Note that this implies that ε_t is also covariance stationary.
- And that y_t will be covariance stationary under the usual condition (e.g. |α₁| < 1).
- So we model the conditional variance ARCH and still model the conditional mean in the same way as before.
- Robert Engle introduced ARCH in a 1982 publication & was awarded a Nobel prize in 2003.

Forecasting with ARCH models

- Consider buying stock at time t and selling at time t + 1.
- If you are risk averse, you may care about the variance of the stock return, say y_{t+1} .
- But why use unconditional variance? That would throw away all info you have about recent events.
- Use conditional variance instead: $Var_t(y_{t+1}) = E_t[\varepsilon_{t+1}^2]$.
- If $\varepsilon_t \sim ARCH(q)$, then $Var_t(y_{t+1}) = E_t[\varepsilon_{t+1}^2] = \alpha_0 + \sum_{i=1}^q \alpha_i \varepsilon_{t+1-i}^2$.
- So estimate or forecast of $Var_t(y_{t+1})$ is $\widehat{Var_t(y_{t+1})} = \widehat{\alpha}_0 + \sum_{i=1}^{q} \widehat{\alpha}_i \widehat{\varepsilon}_{t+1-i}^2$.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

How well did we predict $Var_t(y_{t+1})$?

• How well did we predict $Var_t(y_{t+1})$?

- The problem in answering this is that we don't actually observe $Var_t(y_{t+1})$. In econometric terminology, it's <u>latent</u>.
- So we can't compare actual & predicted values to evaluate the forecast.
- On the other hand, ARCH also provides a prediction for ε_{t+1}^2 and $\widehat{\varepsilon}_{t+1}^2$ is observable. So we can compare observed values of $\widehat{\varepsilon}_{t+1}^2$ to $E_{t-1}\varepsilon_t^2$, i.e.²

$$E_{t-1}\varepsilon_{t+1}^2 = \alpha_0 + \sum_{i=1}^q \alpha_i \varepsilon_{t-i}^2$$
$$\widehat{\varepsilon}_{t+1|t}^2 = \widehat{\alpha}_0 + \sum_{i=1}^q \alpha_i \widehat{\varepsilon}_{t-1}^2.$$

 In your forecast projects, you may consider using ARCH or GARCH to forecast squared stock or exchange rate returns.

²Here $\hat{\varepsilon}_{t+1|t}^2$ denotes the time-t ARCH forecast of ε_{t+1}^2 , whereas $\hat{\varepsilon}_t^2$ refers to the fitted residual at time-t.

Chaoyi Chen (BCE & MNB)

19 / 22

Generalized ARCH (GARCH)

$$\varepsilon_t = v_t \sqrt{h_{t|t-1}}$$
 (6a)

$$h_{t|t-1} = \alpha_0 + \sum_{i=1}^{q} \alpha_i \varepsilon_{t-i}^2 + \sum_{i=1}^{p} \beta_i h_{t-i|t-i-1}$$
(6b)

$$E_{t-1}v_t = 0$$
 (6c)
 $E_{t-1}v_t^2 = 1$ (6d)

- Equations (6a)-(6d) model ε_t as a GARCH(p,q).
- From (6b) can see that $h_{t|t-1}$ is known at time t-1.

•
$$E_{t-1}\varepsilon_t = \underbrace{(E_{t-1}v_t)}_{0} \underbrace{\sqrt{h_{t|t-1}}}_{C} = 0$$

• $E_{t-1}\varepsilon_t^2 = \underbrace{(E_{t-1}v_t^2)}_{1} h_{t|t-1} = h_{t|t-1}$

一回 ト イヨト イヨト

Generalized ARCH (GARCH) Cont.

•
$$Var_{t-1}\varepsilon_t^2 = \underbrace{(E_{t-1}\varepsilon_t^2)}_{h_{t|t-1}} - \underbrace{(E_{t-1}\varepsilon_t)^2}_{0} = h_{t|t-1}$$

- *h*_{t|t-1} is the conditional variance of ε_t and (6b) models it in the style of an ARMA(p,q) model with AR components β_ih_{t-i|t-i-1} and MA components α_iε²_{t-i}.
- h_{t|t-1} often just called "h_t" because it is conditional variance of ε_t. However, it is realized at time t - 1, because it is time t - 1 conditional variance. I use h_{t|t-1} to remind us of this.
- Can write it as generalization of ARCH by combining (6a) and (6b) to get:

$$\varepsilon_t^2 = v_t^2 h_{t|t-1}$$

$$\Longrightarrow \boxed{\varepsilon_t^2 = v_t^2 (\alpha_0 + \sum_{i=1}^q \alpha_i \varepsilon_{t-i}^2 + \sum_{i=1}^p \beta_i h_{t-i|t-i-1})}$$
(7)

- If $\beta_i = 0$, i = 1, ..., p, then (7) specializes to an ARCH(q) $\implies GARCH(0, q) = ARCH(q)$.
- Advantage of GARCH over ARCH is similar to advantage of ARMA over AR: Parsimony: more flexible model with fewer parameters