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ARCH & GARCH

Stylized facts for stocks & exchang rate returns
1 The volatility of returns is not constant.
2 There is volatility persistence: high volatility periods and low volatility

periods =⇒ led to development of ARCH & GARCH.

ARCH = Autoregress Cconditional Heteroskedasticity
GARCH = Generalized ARCH
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Terminology

Unconditional Homoskedasticity = Constant variance. e.g.
Var(ε) = σ2 for all t.

Unconditional Heterokedasticity = Non-constant variance. e.g.

Var(εt) =

{
σ2
1 , t < s

σ2
2 , t ≥ s

.

Conditional Homoskedasticity = Constant conditional variance. e.g.
Vart(εt+1) = σ2 for all t.

Conditional Heterokedasticity = Non - constant conditional variance.
e.g.

Vart(εt+1) =

{
σ2
1 , εt > 0

σ2
2 , εt ≤ 0

.
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Solving for the conditional variance (vart−1(yt) for an
ARMA(p,q))

It is easier than you think

yt = α0 + ∑p

i=1
αiyt−i + ∑q

i=1
βi εt−i︸ ︷︷ ︸

C

+ εt︸︷︷︸
R

=⇒ Vart−1(yt) = Vart−1(εt) = Et−1ε2t − (Et−1εt)
2︸ ︷︷ ︸

0

= Et−1ε2t .

Conclusion: To model conditional variance of yt need only model
conditional variance of εt and this in turn means modeling Et−1ε2t ,
i.e. modeling ε2t .

Chaoyi Chen (BCE & MNB) ARCH and GARCH models 6 / 22



The ARCH concept

We want to model the conditional mean of ε2t :

Et−1
[
ε2t
]
= α0 + α1ε2t−1 (An autoregressive model for ε2t) (1)

Intuition: suppose εt is the (innovation of the) return on the TSE
index. When there is a large movement today (ε2t large), this is
usually followed by large movement the next day (ε2t+1 large).

e.g. If stocks crashed yesterday, (εt−1 << 0), then today is unlikely
to be a calm day.
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How do we turn this into an explicit model for ε2
t ?

First Inclination: Additive error

ε2t = α0 + α1ε2t−1 + vt , vt ∼ WN(0, σ2
v ) (2)

.
This satisfies (1) since it implies

Et−1ε2t = α0 + α1ε2t−1

.

But: what if vt is large negative?

=⇒ could imply ε2t < 0
=⇒ And, that’s just not possible
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An explicit model for ε2
t : second try

Second Try: Multiplicative Error

ε2t = v2t (α0 + α1ε2t−1) (3)

Et−1vt = 0, Et−1v
2
t = 1 (4)

Now if α0 > 0 and α1 ≥ 0, this ensures ε2t > 0.

But, does ε2t satisfy (1) ? Let’s check!

ε2t = v2t (α0 + α1ε2t−1)

Et−1ε2t = Et−1
[
v2t (α0 + α1ε2t−1)

]
= Et−1[v

2
t ]︸ ︷︷ ︸

=1 by assumption

(
α0 + α1ε2t−1

)
= α0 + α1ε2t−1

So, yes, (3) does satisfy (1)
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An explicit model for ε2
t : second try Cont.

Although we may be more comfortable with additive error terms, the
multiplicative errors work better in this context.

Note also that the assumptions of (4): Et−1vt = 0 and Et−1v2t = 1
imply that vt ∼ WN(0, 1).

Proof:
1 already shown in past lectures that Et−1vt = 0 =⇒ E [vt ] = 0 &

cov(vt , vt+j ) = 0 for j 6= 0.
2 To show that E [v2t ] = 1, we have

E [v2t ] = E Et−1v
2
t︸ ︷︷ ︸

=1

= E [1] = 1.

So, yes (3) does satisfy (1). Equation (3) is an ARCH(1) model.
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ARCH(q) Model

ARCH(q) Model:

ε2t = v2t (α0 + ∑q

i=1
αi ε

2
t−i ) (5a)

Et−1vt = 0 and Et−1v
2
t = 1 (5b)

αi ≥ 0, i = 0, 1, 2, ..., q. (5c)

Note that that the conditional heteroskedasticity is essentially
modelled by an autoregression in ε2t .

Coefficient restrictions:
Note that ε2t ≥ 0. So the right hand side (RHS) of (5) cannot ever
imply ε2t < 0.
This mandates (5c).
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How is ARCH applied?

1 Can be applied directly, i.e.

yt = εt εt = vt

√
α0 + ∑q

i=1
αi ε2t−i .

An e.g. might be an exchange rate return.
2 It can be applied to a series with a mean

yt = µ + εt ; εt = vt

√
α0 + ∑q

i=1
αi ε2t−i .

An e.g. might be a stock return.
3 It can be applied to describe the residual of a regression on ARMA

model

e.g . yt = α0 + α1yt−1 + εt

εt = vt

√
α0 + ∑q

i=1
αi ε2t−i

Et−1vt = 0; Et−1v
2
t = 1.
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How is ARCH applied? Cont.

So we can model & forecast both the conditional mean & the
conditional variance of the process, yt .

Recall that:

Vart−1(yt) = Et−1[ε
2
t ] = α0 + ∑q

i=1
ε2t−i

.

When we considered the AR(1) before, we assumed εt ∼ WN(0, σ2),

Now we assume εt ∼ ARCH(q)
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Is ARCH compatible with ARMA and WN Errors?

This begs the question: Is εt ∼ ARCH(q) still also white noise?

To keep the algebra simple, let’s work with q = 1,

εt = vt

√
(α0 + α1ε2t−1)

Et−1vt = 0; Et−1v
2
t = 1.

1 We first show Et−1εt = 0:

Et−1εt = Et−1
{
vt
R

√
α0 + α1ε2t−1NR︸ ︷︷ ︸ }

= Et−1[vt ]︸ ︷︷ ︸
=0

√
α0 + α1ε2t−1

= 0.

2 Recall that Et−1εt = 0 implies both:
(i) E [εt ] = 0 and
(ii) cov(εt , εt+j ) = 0 for j 6= 0.
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Is ARCH compatible with ARMA and WN Errors? cont.

Next, calculate Var(εt) = E [ε2t ]:

E [ε2t ] = E
[
Et−1ε2t

]
Using L.I.E.

= E
[
α0 + α1ε2t−1

]
= α0 + α1E [ε

2
t−1].

So,
E [ε2t ] = α0 + α1E [ε

2
t−1]
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Is ARCH compatible with ARMA and WN Errors? cont.

Now use the lag operator to solve for E [ε2t ]:
1

E [ε2t ] = α0 + α1LE [ε
2
t ]

E [ε2t ]− α1LE [ε
2
t ] = α0

(1− α1L)E [ε
2
t ] = α0

E [ε2t ] =
(1− α1L)

α0

=
(1− α1)

α0

For the last step recall that the lag operator has no effect on the
constant

1If we knew εt was stationary, we could set E [ε2t ] = E [ε2t−1] and solve for E [ε2t ]. But,
we haven’t established yet whether εt is stationary.
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Is ARCH compatible with ARMA and WN Errors? cont.

So, for α1 < 1, we have established that εt ∼ WN(0, α0
1−α1

).

Note that this implies that εt is also covariance stationary.

And that yt will be covariance stationary under the usual condition
(e.g. |α1| < 1).

So we model the conditional variance ARCH and still model the
conditional mean in the same way as before.

Robert Engle introduced ARCH in a 1982 publication & was awarded
a Nobel prize in 2003.
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Forecasting with ARCH models

Consider buying stock at time t and selling at time t + 1.

If you are risk averse, you may care about the variance of the stock
return, say yt+1.

But why use unconditional variance?
That would throw away all info you have about recent events.

Use conditional variance instead: Vart(yt+1) = Et [ε2t+1].

If εt ∼ ARCH(q), then Vart(yt+1) = Et [ε2t+1] = α0 + ∑q
i=1αi ε

2
t+1−i .

So estimate or forecast of Vart(yt+1) is
̂Vart(yt+1) = α̂0 + ∑q

i=1α̂i ε̂
2
t+1−i .
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How well did we predict Vart(yt+1)?

How well did we predict Vart(yt+1)?

The problem in answering this is that we don’t actually observe
Vart(yt+1). In econometric terminology, it’s latent.

So we can’t compare actual & predicted values to evaluate the
forecast.

On the other hand, ARCH also provides a prediction for ε2t+1 and

ε̂2t+1 is observable. So we can compare observed values of ε̂2t+1 to
Et−1ε2t , i.e.2

Et−1ε2t+1 = α0 + ∑q

i=1
αi ε

2
t−i

ε̂2t+1|t = α̂0 + ∑q

i=1
αi ε̂

2
t−1.

In your forecast projects, you may consider using ARCH or GARCH to
forecast squared stock or exchange rate returns.

2Here ε̂2t+1|t denotes the time-t ARCH forecast of ε2t+1, whereas ε̂2t refers to the
fitted residual at time-t.
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Generalized ARCH (GARCH)

εt = vt
√

ht|t−1 (6a)

ht|t−1 = α0 +
q

∑
i=1

αi ε
2
t−i +

p

∑
i=1

βiht−i |t−i−1 (6b)

Et−1vt = 0 (6c)

Et−1v
2
t = 1 (6d)

Equations (6a)-(6d) model εt as a GARCH(p,q).

From (6b) can see that ht|t−1 is known at time t − 1.

Et−1εt = (Et−1vt)︸ ︷︷ ︸
0

√
ht|t−1︸ ︷︷ ︸
C

= 0

Et−1ε2t = (Et−1v
2
t )︸ ︷︷ ︸

1

ht|t−1 = ht|t−1
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Generalized ARCH (GARCH) Cont.

Vart−1ε2t = (Et−1ε2t)︸ ︷︷ ︸
ht|t−1

− (Et−1εt)
2︸ ︷︷ ︸

0

= ht|t−1

ht|t−1 is the conditional variance of εt and (6b) models it in the style
of an ARMA(p,q) model with AR components βiht−i |t−i−1 and MA

components αi ε
2
t−i .

ht|t−1 often just called ”ht” because it is conditional variance of εt .
However, it is realized at time t − 1, because it is time t − 1
conditional variance. I use ht|t−1 to remind us of this.

Can write it as generalization of ARCH by combining (6a) and (6b)
to get:

ε2t = v2t ht|t−1 (7)

=⇒ ε2t = v2t (α0 +
q

∑
i=1

αi ε
2
t−i +

p

∑
i=1

βiht−i |t−i−1)
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GARCH and ARCH relation

If βi = 0, i = 1, ..., p, then (7) specializes to an ARCH(q)
=⇒ GARCH(0, q) = ARCH(q).

Advantage of GARCH over ARCH is similar to advantage of ARMA
over AR:
Parsimony: more flexible model with fewer parameters
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