Economics 2740

Department of Economics

University of Guelph

Tests About Population Means

Case 1: ${ }^{2}$ known, data normal (Section 11.3 ed6 or 10.3 ed5)

- e.g. UofG isn't cheap
- Is it worth it?
- Test if UofG grads earn more than other college grads, age 25
- Obviously not all UofG grads earn more test if population mean is higher
- (Please note that the data for this example is fictitious)

How to test this

- Step 1: Look up average university grad salary age 25 in Statistics Canada (${ }_{0}=50$ thousand CAD/yr.).
- Step 2: Survey random sample: " n " U of G grads age 25 , and then simply record the salary levels of each respondent.

Who

X_{1} Jason
X_{2} Bob
$X_{3} \quad$ Mary
$\mathrm{X}_{4} \quad$ Fumiko
X_{5} Elvin
X_{6} Anna

Salary (thousands)
55
45
60
60
55
55

Step 3: Calculate sample means

$$
\begin{aligned}
\bar{X}=\frac{1}{n} \quad n_{i=1}^{n} x_{i} & =1 / 6\left(\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}+\mathrm{x}_{4}+\mathrm{x}_{5}+\mathrm{x}_{6}\right) \\
& =1 / 6(55+45+60+60+55+55) \\
& =55
\end{aligned}
$$

Key Notes:

- $55>50$
- This suggests UofG Grads do better
- However, this is based on just 6 people
- Did we get $\bar{X}>50$ by chance?
- Or is it meaningful?
- To answer this need Hypothesis test Step 4: Specify $\mathbf{H}_{\mathbf{0}}$ and $\mathbf{H}_{\mathbf{1}}$

Define $=$ pop. Mean UofG Grad (age 25) Now, let ${ }_{0}=50$ (Hypothesized value)

Q: Can we reject 50 infavor of > 50?
H_{0} :
${ }_{0}$ (U of G Grads don't do better)
$H_{1}: \quad>{ }_{0}(U$ of G Grads do better $)$

Step 5: Set a "Significance" Level

- What is the standard of proof
- How sure must we be before we say U of G Grads do better (i.e. reject H_{0})

Follow Common Practice

- Must be 95% sure to reject
- Set = 0.05
[i.e. Restrict $\operatorname{Prob}($ Type I) $\leq 5 \%$]

Step 6: Form Test Statistic

- Intuition: Reject if \bar{X} - ${ }_{0}=\bar{X}$ - 50 large
- if $\bar{X}=100$ then $\bar{X}>50$ too big to be by chance
- if $\bar{X}=50.01$ then $\bar{X}>50$ likely by chance
- if $\bar{X}=55$ then hard to tell
- Q: How do we measure large?
- A: In "Standard Deviations of \bar{X} "
- Why: (1) Doesn't depend on the unit of measurement (2) Means same thing for all tests
- To do this, divide $\bar{X}-{ }_{0}$ by its standard deviation (SD)
- Define: $\left.z=\frac{\left(\begin{array}{ll}\bar{x} & \mathrm{o}\end{array}\right)}{\bar{x}}=\frac{(\bar{x}}{\sqrt{x}} \begin{array}{l}\text { o }\end{array}\right)$
- Z measures the size of \bar{X} - ${ }_{0}$ in standard deviations
- If $\mathrm{z}=3$, then \bar{X} is 3 standard deviations above 50
- unlikely to happen by chance
- suggests rejecting H_{0}

When H_{0} holds and $\mu=\mu_{0}$, Then:

$$
z==\frac{\left(\bar{x}-\mu_{0}\right)}{\sigma / \sqrt{n}}=\frac{(\bar{x}-\mu)}{\sigma / \sqrt{n}} \sim N(0,1)
$$

Interpretation:

- If the hypothesized value is correct, then z centers the sample mean about true population mean
- In which case, z is standard normal

Step 7: Find the Critical Value

- Q: How many standard deviations above 50 must \bar{X} be for us to reject? i.e. How large must z be?
- A: Z must be so large that the prob. of getting a z-value that big when $\boldsymbol{H}_{\underline{0}} \underline{\text { holds }}$ is less than $=0.05$.
- The critical value Z is the cut-off point
- if $\mathrm{Z}>\mathrm{Z}$ then we Reject H_{0}
- if $\mathrm{Z} \leq Z$ then we Fail to reject H_{0}
- Choose Z so that:

Prob (Type I Error) $=$

$$
\operatorname{Prob}\left(Z>Z \text { when }={ }_{0}\right)=\alpha
$$

- Define Z by Prob $(Z>Z)=\alpha$ for $Z \sim N(0,1)$
- Please see graph of Normal distribution in the back of the book (i.e. $\mathrm{Z}_{0.05}=1.645$)

Step 8: Calculate Z and conduct test

- In our example, assume $\sigma=2(6)^{1 / 2}$

$$
z=\frac{\bar{x} \quad 0}{/ \sqrt{n}}=\frac{55 \quad 50}{2 \sqrt{6} / \sqrt{6}}=\frac{55 \quad 50}{2}=2.5>Z=1.645
$$

Reject H_{0} at 5\% significance level
It pays to go to Uof G! (At least in this sample)

