Economics 2740 Department of Economics University of Guelph

Tests About Population Means

Case 1: s²known, data normal (Section 11.3 ed6 or 10.3 ed5)

- e.g. UofG isn't cheap
- Is it worth it?
- Test if UofG grads earn more than other college grads, age 25
- Obviously not all UofG grads earn more test if population mean is higher
- (Please note that the data for this example is fictitious)

How to test this

- <u>Step 1</u>: Look up average university grad salary age 25 in Statistics Canada (M₀= 50 thousand CAD/yr.).
- <u>Step 2:</u> Survey random sample: "n" U of G grads age 25, and then simply record the salary levels of each respondent.

	Who	<u>Salary</u> (thousands)
X ₁	Jason	55
X_2	Bob	45
X ₃	Mary	60
X_4	Fumiko	60
X_5	Elvin	55
X ₆	Anna	55

<u>Step 3</u>: Calculate sample means $\overline{X} = \frac{1}{n} \mathop{\hat{\otimes}}_{i=1}^{n} x_i = 1/6(x_1 + x_2 + x_3 + x_4 + x_5 + x_6)$ = 1/6(55 + 45 + 60 + 60 + 55 + 55)= 55

Key Notes:

- 55 > 50
- This suggests UofG Grads do better
- However, this is based on just 6 people
- Did we get $\overline{X} > 50$ by chance?
- *Or* is it meaningful?

• To answer this need Hypothesis test

<u>Step 4</u>: **Specify H**₀ and H₁

<u>*Define*</u> M = pop. Mean UofG Grad (age 25) Now, let $M_0 = 50$ (Hypothesized value)

Q: Can we reject $m \notin 50$ in favor $M \circ f > 50$?

 H_0 : $\mathbb{M} \stackrel{\circ}{=} \mathbb{M}_0$ (U of G Grads don't do better) H_1 : $\mathbb{M} > \mathbb{M}_0$ (U of G Grads do better)

<u>Step 5:</u> Set a <u>"Significance"</u> Level

- What is the standard of proof
- How sure must we be before we say U of G Grads do better (i.e. reject H₀)

Follow Common Practice

- Must be 95% sure to reject
- Set *a*= 0.05

[i.e. Restrict Prob(Type I) $\leq 5\%$]

<u>Step 6:</u> Form Test Statistic

- <u>Intuition</u>: Reject if $\overline{X} \mathbb{m}_0 = \overline{X} 50$ large
 - if $\overline{X} = 100$ then $\overline{X} > 50$ too big to be by chance
 - if $\overline{X} = 50.01$ then $\overline{X} > 50$ likely by chance
 - if $\overline{X} = 55$ then hard to tell
- <u>Q</u>: How do we measure large?
- <u>A:</u> In "Standard Deviations of \overline{X} "
- Why: (1) Doesn't depend on the unit of measurement (2) Means same thing for all tests

- To do this, divide \overline{X} \mathbb{M}_0 by its standard
- deviation (SD) <u>Define:</u> $z = \frac{(\overline{x} m_0)}{S_{\overline{x}}} = \frac{(\overline{x} m_0)}{\frac{S}{\sqrt{n}}}$
 - Z measures the size of \overline{X} -m_o in standard deviations
- If z = 3, then \overline{X} is 3 standard deviations above 50
 - unlikely to happen by chance
 - suggests rejecting H₀

Interpretation:

- <u>If the hypothesized value is correct</u>, then z centers the sample mean about true population mean
- In which case, z is standard normal

Step 7: Find the Critical Value

Q: How many standard deviations above 50 must X be for us to reject?
i.e. How large must z be?

• A: Z must be so large that the prob. of getting a z-value that big <u>when H_0 holds</u> is less than $\partial = 0.05$.

- The <u>critical value Z_a is the cut-off point</u>
 - if $Z > Z_a$ then we Reject H_0
 - if $Z \le Z_a$ then we Fail to reject H_0
- Choose Z_a so that: Prob (Type I Error) = Prob (Z > Z_a when M=M₀) = α
 <u>Define</u> Z_a by Prob (Z > Z_a) = α
 - for $Z \sim N(0,1)$
- Please see graph of Normal distribution in the back of the book (i.e. $Z_{0.05} = 1.645$)

Step 8: Calculate Z and conduct test

• In our example, assume $\sigma = 2(6)^{1/2}$

$$z = \frac{x - m_0}{S / \sqrt{n}} = \frac{55 - 50}{2\sqrt{6} / \sqrt{6}} = \frac{55 - 50}{2} = 2.5 > Z_a = 1.645$$

Reject H_0 at 5% significance level It pays to go to Uof G! (At least in this sample)