Economics 2740 Department of Economics University of Guelph

Hypothesis tests when the data is not normally distributed

Inference when data is not normal

- 1 .Examples of non-normal data
 - a .Categorical data (discrete)
 - Which brand of cereal?
 - Who did you vote for?
 - b .Much financial data
 - stock market returns,
 - exchange rate returns.

Implications for Reference

A.If n is small this causes a problem:

- Z is not N (0,1)
- **t** is not t (**n-1**)
- **Z**, **t** tests don't work

Implications for Inference

- B. If n is large "saved" by the central limit theorem.
 - •Z Approx N (0,1)
 - •t Approx t (n-1) Approx N (0,1)
 - •our tests work "approximately"

How Large is Large?

- Depends on how far from normality
- A rough rule of thumb:
 - i) n < 30 n small (red light)

conduct test only if data is normal

ii) **n>150** n large (green light)

conduct test with confidence

iii) 30<n<150 grey zone (yellow light)
 conduct test with caution</pre>

Case 3: Data may be not normal

Assumptions $n - \text{large } \sigma^2 - \text{unknown}$ $x_1, x_2, \dots x_n \sim \text{i.i.d.} (M, \sigma^2)$

PDF of the data is unkown.

Cont'd. Case 3 (non-normal data).

B. Same as case 1 but now test approximate.

- Reject Ho: $\mathbb{M} \leq \mathbb{M}_0$ if $Z = (\overline{X} - \mathbb{M}_0)/(\sigma/n^{(1/2)}) > Z\alpha$

- In case I: $\alpha = P(\text{reject when } \mathbb{M} = \mathbb{M}_0)$
- In case III: α Approx = P(reject when $\mathbb{M} = \mathbb{M}_0$)
- An approximation

Explanation and Summary

Case I	Case III
$x_1, x_2, \dots, x_N \sim i.i.d. N (M, S^2)$	$x_1, x_2, \dots x_N \sim \text{i.i.d.} (\text{M}, \text{S}^2)$
$E[x_i]=m$	$E[x_i]=m$
$Var(x_i) = S^2$	$Var(x_i)=S^2$
$\overline{X} \sim N (m s^2/n)$	By central Limit Theorem:
Exact.	$X \gg N (M,S^2/n)$
$Z=(\overline{X} - m_0)/(S/n^{(1/2)}) \sim$	$Z = (\overline{X} - m_0)/(S/n^{(1/2)}) $
N (0,1), exact.	N (0,1), approximate.
$H_A: M \ ^{3} M_0$	$H_A: M \ \ \ \ M_0$
Prob (Z>Za, $M = M_0$) = a	Prob (Z>Za, $m = m_0$) » a
Exact.	Exact.

Case 4. Data may not be normal and variance unknown.

- Assumptions:
 - ▶n is large,
 ▶σ² unknown,
 ▶PDF unknown
- use $t = (\overline{X} M_0)/(s/n^{(1/2)})$ like before
- both t (n-1) & N (0,1) Provide valid approximations
 - T Approx ~ t (n-1) Approx ~ N (0,1)
 - Use t-critical values

Explanation

- Large $n \Rightarrow s^2$ approx $= \sigma^2$
- $t = (\overline{X} m_0)/(s/n^{(1/2)}) \approx Z = (\overline{X} m_0)/(\sigma/n^{(1/2)})$ • $\approx N(0,1)$
- also large $n => t(n-1) \approx N(0,1)$
- => $t \approx t (n-1)$
- Same Procedure as in Case 2: conduct t-test
- Difference in interpretation: $\alpha \approx P$ (Type I Error): Only an approximate test.