Economics 2740
Department of Economics
University of Guelph

P-Values

Suppose that you want to test:
$\mathrm{H}_{0}: \mu \leq \mu_{0}, \mathrm{H}_{\mathrm{A}}: \mu>\mu_{0}, \alpha=0.05$
-Consider the following z values:
(i) $\mathrm{z}=0.02 \rightarrow\left\{<\mathrm{Z}_{\alpha}\right\}$
(ii) $\mathrm{z}=1.60$
(iii) $\mathrm{z}=1.70 \rightarrow\left\{>\mathrm{Z}_{\alpha}\right\}$
(iv) $\mathrm{z}=3.0$
-Hyp. test doesn't tell us strength of evidence against $\mathrm{H}_{0}$

- P -value $=$ Prob of getting z -value as large or larger if $\mu=\mu_{0}$
$=$ smallest significance level at which we can reject $\mathrm{H}_{0}$
$=$ "observed significance level"


## Let $X_{i}, \ldots X_{n} \sim N\left(\mu, \sigma^{2}\right)$, where $\sigma^{2}$ known.

$$
\text { - } \xi \sim N(0,1) \quad \text { R.V. }\left(\xi \equiv X_{i}\right)
$$

$$
\text { A. } \begin{aligned}
& H_{0}: \mu \leq \mu_{0} \quad H_{a}: \mu>\mu_{0} \\
\text { P-val } & =\operatorname{Prob}(\xi \geq Z)
\end{aligned}
$$

[See Graph in Class]

## B. $\mathrm{H}_{0}: \mu \geq \mu_{0}, \mathrm{H}_{\mathrm{a}}: \mu<\mu_{0}$ P -value $=\operatorname{Prob}(\xi \leq \mathrm{Z})$

[See graph in class]

$$
\begin{array}{r}
\text { C. } \mathrm{H}_{0}: \mu=\mu_{0}, \mathrm{H}_{\mathrm{a}}: \mu \neq \mu_{0} \\
\quad \text { P-value }=\operatorname{Prob}(|\xi| \geq \mathrm{Z})
\end{array}
$$

[See graph in class]

## Problems

1. $X_{1}, \ldots X_{6} \sim \operatorname{iid} N(\mu, 24)$
$\bar{X}=55$
$\mathrm{H}_{0}: \mu \leq 50 \quad \mathrm{H}_{\mathrm{a}}: \mu>50$
Find P -value
Solution: [See graph in class]
a) Calculate Z
$\mathrm{z}=(55-50) / 2=2.5$
b) Look up
$\operatorname{Prob}(\mathrm{z}>2.5)=0.0062$
$\underline{P-v a l u e}=0.0062$
2. $X_{1}, \ldots X_{n} \sim N(\mu, 4)$

$$
\begin{aligned}
& \mathrm{H}_{0}: \mu \leq 0 \quad \mathrm{H}_{\mathrm{a}}: \mu>0 \\
& \bar{X}=1 \\
& \text { P-value }=0.10
\end{aligned}
$$

Find $n$
$\rightarrow$ Soln: a) use p-value to look up z [see graph in class]
b) solve for $n$

$$
\begin{aligned}
& 1.28=\mathrm{z}=(\bar{X}-\mu) /\left[\sigma^{2} /(\mathrm{n})^{1 / 2}\right] \\
& 1.28=1 /\left[2 /(\mathrm{n})^{1 / 2}\right]=(\mathrm{n})^{1 / 2} / 2 \\
& (\mathrm{n})^{1 / 2}=2(1.28) \Rightarrow \underline{\boldsymbol{n}=\mathbf{6} .55}
\end{aligned}
$$

## 4. P -value $=0.07$

Can we reject $\mathrm{H}_{0}$ for
(i) $\alpha=0.05$ ?
(ii) $\alpha=0.10$ ?
[See graph in class]
(i) No, can't reject for $\alpha=0.05$
(ii) Yes, can reject for $\alpha=0.10$
2. Two sided p-val.

$$
\begin{aligned}
& \mathrm{X}_{1}, \ldots \mathrm{X}_{6} \sim \operatorname{iid} \mathrm{~N}(\mu, 24) \\
& \bar{X}=55
\end{aligned}
$$

$$
\mathrm{H}_{0}: \mu=50 \quad \mathrm{H}_{\mathrm{a}}: \mu \neq 50
$$

Find P-value
[Solution: See graph in class]
P-value $=\mathrm{P}(|\mathrm{z}|>2.5)$

$$
\begin{aligned}
& =\mathrm{P}(\mathrm{z}<-2.5)+\mathrm{P}(\mathrm{z}>2.5) \\
& =2 \cdot 0.0062=\underline{\mathbf{0 . 0 1 2 4}}
\end{aligned}
$$

