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Discrete Random Variables

Eco 2470: Economic Statistics

(Chapter 7)
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Random Variables…

A random variable is a function or rule that assigns a 

number to all possible random outcomes of an expirement.

Alternatively, the value of a random variable is a numerical 

event.

Instead of talking about the coin flipping event as

{heads, tails} think of it as

“the number of heads when flipping a coin”

{1, 0} (numerical events)



Copyright © 2009 Cengage Learning

Random Variable Examples

• Flip a Coin  X= 1 (if heads)  X = 0 (if tails).  

(possible outcomes: heads or tails)

• Roll a die:  X  is the number on the face of the die.

(possible outcomes: rolls of one through six)

• Roll two dice: X is the sum of the numbers on both dies.

(possible outcomes: sums of 2,3,…,12)

• Roll two dice: X is the second roll minus the first roll

(possible outcomes: differences of -5,-4,…,0,1,..5)
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Two Types of Random Variables… 

Discrete Random Variable

– one that takes on a countable number of values

– E.g. values on the roll of dice: 2, 3, 4, …, 12

Continuous Random Variable

– one whose values are not discrete, not countable

– E.g. time (30.1 minutes? 30.10000001 minutes?)

Analogy:

Integers are Discrete, while Real Numbers are Continuous
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Probability Distributions…

A probability distribution is a table, formula, or graph that 

describes the values of a random variable and the probability 

associated with these values.

Since we’re describing a random variable (which can be 

discrete or continuous) we have two types of probability 

distributions:

– Discrete Probability Distribution, (this chapter) and

– Continuous Probability Distribution (Chapter 8)
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Probability Notation…

An upper-case letter will represent the name of the random 

variable, usually X.

Its lower-case counterpart will represent the value of the 

random variable.

The probability that the random variable X will equal x is: 

P(X = x)

or more simply 

P(x)



Copyright © 2009 Cengage Learning

Discrete Probability Distributions…

The probabilities of the values of a discrete random variable

may be derived by means of probability tools (e.g trees) so 

long as these two conditions apply:
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Discrete Probability Distribution: Examples

• Dummy Variable: Flip Coin:  X = 1 (heads), X =0 (tails)

x        P(X=x)

0          0.5                 P(x) = ½ for x = 0,1

1 0.5

• Roll a single die: X=number on the face of the die

x P(X=x)

1          1/6

2          1/6

3          1/6

4          1/6                 P(x) = 1/6 for x = 1,2,3,4,5,6

5          1/6

6          1/6
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Discrete Probability Distribution: Examples

• Roll 2 dice: X is the sum of the two faces.

x     P(x)=P(X=x)

2     1/36

3     2/36           

4     3/36

5     4/36

6     5/36

7     6/36

8     5/36

9     4/36                       P(x) =  ( 6 - | 7-x | )/36     for x =2,3,…, 12

10     3/36                                 

11     2/36

12     1/36

1 2 3 4 5 6

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 9 10

5 6 7 8 9 10 11

6 7 8 9 10 11 12
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Relative frequency interpretation

• Discrete Probability Distributions can be interpreted 
as the relative frequency of the population

• Example:  X = 1 (heads), 0 (tails)

If we tossed a billion coins we would expect

outcome relative frequency    x     P(x)

Tails         ½                      0      ½

Heads      ½ 1      ½

• Likewise if we tossed a billions dice X = face of die

outcome relative frequency   x     P(x)

Roll a 1        1/6                  1     1/6

Roll  a 2       1/6                  2     1/6   etc
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Example 7.1 Statistical Abstract of the U.S
Number Number of

of Persons Households 

x (millions) P(x)     

1 31.1 31.1/116.0 = .268

2 38.6 38.6/116.0 = .333

3 18.8 18.8/116.0  = .162

4 16.2 16.2/116.0  = .140

5 7.2 7.2/116.0    = .062

6 2.7 2.7/116.0    = .023

7 or more 1.4 1.4/116.0    = .012

Total                116.0 1.000

Hidden assumption: Treat Statistical Abstract as population.
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Using the distribution to calculate probabilities

x     P(x)=P(X=x) Roll 2 dice.  What is the probability that they 

2     1/36                   sum to less than 5?

3     2/36             

4     3/36                   P(X < 5) = P(X=2) + P(X=3) + P(X=4)

5     4/36                                   = 1/36  + 2/36  + 3/36  = 6/36

6     5/36

7     6/36

8     5/36                  What is the probability of rolling more than 4,

9     4/36                  but less than 8.

10    3/36                  P(4 < X < 8) = P(X=5) + P(X=6) + P(X=7)                

11    2/36                                       =  4/36+ 5/36 + 6/36 = 15/36

12    1/36
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Example 7.1

E.g. what is the probability there are 4 or more persons in 

any given household?
x P(x)       

1 .268

2 .333

3 .162

4 .140

5 .062

6 .023

7 or more .012

P(X ≥ 4) = P(4) + P(5) + P(6) + P( 7 or more)

= .140 + .062 + .023 + .012 = .237 
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Cumulative Distribution Function (CDF)

• Probability Distribution:  P(X=x)  

– the probability that X takes a certain value (x)

– Interpret as relative frequency of the population

• Cumulative Distribution Function:  P(X ≤ x)

–the probability that X is less than or equal to a certain value (x)

– Interpret as cumulative relative frequency of the population
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CDF - Examples

• Heads and Tails

x    P(X=x)      P(X ≤ x) 

0      ½              ½  

1 ½                1

• Roll a Single Die

x   P(X=x)   P(X ≤ x)

1     1/6           1/6 

2     1/6           2/6 

3     1/6           3/6 

4     1/6           4/6

5     1/6           5/6

6     1/6           6/6
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CDF of Example 7.1 (Statistical Abstract)

• About 60 Percent of households have two or fewer people.

• About 90 percent of household have four or fewer people.

x	 P(X=x) P(X	≤x)

1 0.268 0.268

2 0.333 0.601

3 0.162 0.763

4 0.140 0.903

5 0.062 0.965

6 0.023 0.988

7 0.012 1.000
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Example 7.1: Calculate probability from CDF

Example 7.1: Suppose we are only provided the CDF.  Find 

the probability of a household with exactly 4 members.

Find P(4) = P(X=4).

Solution (Work Backwards):

P(X=4) = P(X≤4) – P(X≤3)

= 0.903 – 0.763

= 0.140

x	 P(X	≤x)

1 0.268

2 0.601

3 0.763

4 0.903

5 0.965

6 0.988

7 1.000
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Calculate Population Percentile from CDF of Ex. 7.1

• What is the 60th Population Percentile of Household size?

Restate the problem mathematically:

Find x for which P(X ≤ x) = 0.60

Answer:  P(X ≤ 2) = 0.601

So x =2 households is 

approximately 60th Percentile

x	 P(X	≤	x)

1 0.268

2 0.601

3 0.763

4 0.903

5 0.965

6 0.988

7 1.000
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The Population Mean 

• Recall Sample Mean:   

where n is the size of the sample

• Population mean (Denoted E[X] or Greek letter “mu”)

E[X] =                         where N the population size

and the xi are all the individuals in the population
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Another Formula for Population Mean

Formula based on Probabilities:

•Where the x’s are all the values that X can take.

•Interpretation: A weighted average, where the probabilities 

are the weights.

•Which one is right?   Both:  they give the same answer as 

illustrated by the next example using Example 7.1 data.

•The intuition for why they are the same is that the 

probability weights can be interpreted as population relative 

frequencies. 
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Example: Both Population Mean Formulas Give Same Answer

  m =
1

N
xi = Population Mean Household Size =

i=1

N

å

  1 31.1( ) + 2 38.6( ) + 3 18.8( ) + 4 16.2( ) + 5 7.2( ) + 6 2.7( ) + 7 1.4( )éë ùû 116

=  1 31.1 /116 ( ) + 2 38.6 /116( ) + 3 18.8 /116( ) + 4 16.2 /116( ) + 5 7.2 /16( ) + 6 2.7 /116( ) + 1.4 /116( )

=1 0.268( ) + 2 0.333( )  + 3 0.162( ) +  4 0.140( )  +  5 0.062( ) + 6 0.023( ) + 7 0.012( )

=  1P X = 1( ) + 2P X = 2( ) + 3P X = 3( ) + 4P X = 4( ) + 5P X = 5( ) + 6P X = 6( ) + 7P X = 7( )   

= xP X = x( )
all x

å  
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When to use which formula

• Use the formula based on the population mean                    

if given information about all the individuals in the 

population

• Use the formula based on probabilities if given a list of 

possible outcomes and their probabilities. 
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Suppose that if the entire population of 34,930,000 Canadians 

were laid end to end it would create a human chain of 63,879,984 

meters in length. Find the population mean Canadian height:

N= 34,930,000                  

use pop. Mean version of formula

=   63,879,984 / 34,930,000 = 1.8288 

Examples: when to use which formula

xi
i=1

N

å = 63,879,984 meters
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Examples (con’t): which formula to use

• A fair six sided die will be rolled and the face of the die 

recorded. Find the population mean.

We have been (implicitly) give the probability distribution:

x    P(X=x)

1 1/6                        Use probability version of formula

2     1/6

3     1/6             

4     1/6

5     1/6      =1(1/6) + 2(1/6) + 3(1/6) + 4(1/6)+ 5(1/6)+6(1/6)

6     1/6      = (1+2+3+4+5+6)/6 = 21/6 = 3.5
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Forecast Interpretation of the Pop. Mean

• E[X] --- The “E” stands for Expectation

• X is a random variable – we do not know ahead of time 

what value it will take.

• But we can still form an expectation, which can be thought 

of us as our best guess or forecast.

• The population mean is a natural forecast because it falls 

in roughly in the middle of the all possible values that X 

can take.

• Of course,  E[X] ≠ X in general.  Forecasts are rarely that 

accurate.
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Laws of Expected Value…
Let c be a constant and X and Y be random variables:

1. E(c) = c                     e.g. E[5] =5

Our best guess of a constant is the constant – of course!

2. E(X + c) = E(X) + c

If we add a constant to X, we add same constant to our forecast of    

X.  Note, that we “pull” the constant out of the expected value.

3. E(cX) = cE(X)

If we multiply X by constant, should multipy our forecast of X by    

same constant. Again we “pull” the constant out.     

3. E[X+Y] = E[X] + E[Y]

Our best guess of X+Y is our best guess of X plus our best guess 

of Y. The expectation of the sum equals sum of the expectation.



Copyright © 2009 Cengage Learning

Example 7.4: Using rules of expectation

Monthly sales have a mean of $25,000. Profits are calculated 

by multiplying sales by 30% and subtracting fixed costs of 

$6,000.

Find the mean monthly profit.

Profit            =  0.30(sales) – 6,000

E(Profit) =E[.30(Sales) – 6,000]

=E[.30(Sales)] – 6,000 [by rule #2]

=.30E(Sales) – 6,000 [by rule #3]

=.30(25,000) – 6,000 = 1,500

Thus, the mean monthly profit is $1,500
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Example: Using the rules of expectation

Example: ¾ of a client’s retirement portfolio is invested in the TSX 

and ¼ is invested in the S&P 500.  Your firm’s analyst indicates an 

expected return of 7 percent for the TSX and 5 percent for the S&P 

500 (in CAD).  Provide the expected return of your client’s portfolio.

Solution:

Let rTSX = return on TSX = 7%

rS&P = return on S&P500 =5%

rP = return on clients porfolio

rP = ¾ rTSX + ¼ rS&P

E[ rP] = E[¾ rTSX + ¼ rS&P] 

= E[¾ rTSX ] + E[¼ rS&P]      [by rule #4]

= ¾ E[rTSX ] + ¼ E[rS&P]      [by rule #3]

= ¾ [7%] + ¼ [5%]  = 6.5 %
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Expectations of Functions of Random Variables

Let X be a Random Variable and g be a function.

We are interested in E[g(X)]

•Interpret E[g(X)] population mean of g(X)

•Interpret E[g(X)] as forecast of g(X)

•Interpret E[g(X)] as weighted average of g(X), using the 

probabilities of X as population weights:

E[g(X)] = Σall x g(x)P(X=x)

•Unfortunately the “rules” don’t help us unless the function g 

is linear.

E[g(X)] ≠ g(E[X]) unless g is linear.
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Example: Expected Utility

• Suppose your utility from rolling one fair six-sided die is 

given by U(X) = X2-6 where X is number on the face of 

the die. Find the expected utility from rolling the die.

U() takes place of g() in formula.

E[U(X)] =  Σall x U(x)P(X=x)                                             

= 1/6(-5)+1/6(-2)+1/6(3) + 

1/6(10) + 1/6(19) +1/6(30)

= 1/6 (-5-2+3+10+19+30)

= 1/6 (55)  = 9.167

x P(X=x) U(X)=x2-6

1 1/6 -5
2 1/6 -2
3 1/6 3
4 1/6 10
5 1/6 19
6 1/6 30

Total 55

Average 9.167
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Population Variance 

Suppose that we could observe the entire 

population:            

then the population variance could be calculated 

analogously to the sample variance as:

V (X) = s 2 =
1

N
(xi - m)2

i=1

N

å

 x1,x2,… ,xN
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Population Variance as an Expectation

The population can equivalently be defined by the following 

expectation:

This an expectation of a function of X in the form: 

We can express VAR(X) as a probability weighted sum:

where we sum over all possible outcomes x.

s 2 =V X( ) = E X - m( )
2é

ë
ù
û

E g X( )éë ùû  where g(X) = X - m( )
2

s 2 =V X( ) = g x( )
all  x

å P X = x( ) = x - m( )
2
P X = x( )

all  x

å
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Using the two definitions of variance

• Similar to the population mean, the variance has two 

definitions: one based the population and one based on 

probability weights applied to all possible outcomes

• Again, the two are equivalent. However, this time we will 

just accept this without working through the intuition.

• Which definition is useful depends on what information 

you are given.
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Example Variance of Coin Toss

Example: One fair coin is tossed. X = 1 (heads) or 0 (tails).

What are E(X) and V(X)?

Note: Given probability information (not a population).  So 

use probability weights formulas:

0.25

0.25
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Laws of Variance…

V(c) = 0

The variance of a constant (c) is zero.

V(X + c) = V(X)

Constants don’t add any variation.

V(cX) = c2V(X) 

Don’t forget to the square the constant when taking it out of 

variance.
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Example 7.4…

Monthly sales have a mean of $25,000 and a standard 
deviation of $4,000. Profits are calculated by multiplying 
sales by 30% and subtracting fixed costs of $6,000.

Find the standard deviation of monthly profits.

2) The variance of profit is = V(Profit)

=V[.30(Sales) – 6,000]

=V[.30(Sales)] [by rule #2]

=(.30)2V(Sales) [by rule #3]

=(.30)2(16,000,000) = 1,440,000

Again, standard deviation is the square root of variance,

so standard deviation of Profit = (1,440,000)1/2 = $1,200
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Bivariate Distributions…

Up to now, we have looked at univariate distributions, i.e. 

probability distributions in one variable.

bivariate distributions are probabilities of combinations of 

two variables.

Bivariate probability distributions are also called joint 

probability. A joint probability distribution of X and Y is a 

table or formula that lists the joint probabilities for all pairs

of values x and y, and is denoted P(x,y).

P(x,y) = P(X=x and Y=y)



Copyright © 2009 Cengage Learning

Example 7.5…

Xavier and Yvette are real estate agents. Let X denote the 

number of houses that Xavier will sell in a month and let Y 

denote the number of houses Yvette will sell in a month. An 

analysis of their past monthly performances has the 

following joint probabilities (bivariate probability 

distribution).
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Marginal Probabilities…

As before, we can calculate the marginal probabilities by 

summing across rows and down columns to determine the 

probabilities of X and Y individually:

E.g the probability that Xavier sells 1 house = P(X=1) =0.50
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Describing the Bivariate Distribution…

We can describe the mean, variance, and standard deviation 

of each variable in a bivariate distribution by working with 

the marginal probabilities…

same formulae as for 

univariate distributions…
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Expectations for Bivariate Distributions

• Recall that:

• What if g is a function of both x and y:  g(x,y)?

where                                                the joint probability 

• We can use this to define the population covariance…

E g x( )éë ùû = g x( )
all  x

å P(x)

E g x,y( )éë ùû = g(x,y)P(x,y)
all  y

å
all  x

å

P X,Y( ) = P X = x and Y = y( )
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Population Covariance: 

The covariance of two discrete variables is defined as:

or alternatively using this shortcut method:

where                                                the joint probability 

COV X,Y( ) = E X - mx( ) Y - my( )é
ë

ù
û = x - mx( ) y - my( )P(x, y)

all y

å
all  x

å

COV X,Y( ) = E XY[ ]- mxmy =
all y

å xyP x,y( )
all x

å - mxmy

P x,y( ) = P X = x and Y = y( )
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Population Covariance: 

• There is also a version based on observation of the entire 

population:

given by:
 x1,x2,… ,xN

COV (X,Y ) =
1

N
xi - mx( )

i=1

N

å yi - my( )
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Recap: Two Formulas For Pop Covariance

• Note: Just as for the population mean and variance, we 

have two formulas for the population covariance:

–A version based on the individuals in the population, which looks 

similar to the sample version (see chapter 4)

–A version based on a probability weighted average or expectation 

(see chapter 7)

• Although they look different the two formulas again lead 

to the same answer.

• Which we use is a matter of convenience: 

–If you have the population or information about it, use the 

population based version.

–If you have information on the probabilities – use the probability 

based version.
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Example: Pay & Job Satisfaction I

• A company is interested in the relationship between its employees’ 

annual wage (X) and their job satisfaction (Y). They survey the 

entire population of all their employees and report:

Find the population covariance between wage and job satisfaction. 

Sol: This population info, not prob info. So use population version of 

formula to obtain.

1

N
xi

i=1

N

å = 50 (in thousands)       
1

N
yi

i=1

N

å = 7 (on scale of 1 to 10)

xi - 50( ) yi - 7( )
i=1

N

å = 15,000      N = 10,000

COV(X,Y ) =
1

N
xi - mx( )

i=1

N

å yi - my( ) =
1

10,000
xi - 50( ) yi - 7( )

i=1

N

å =
15,000

10,000
  =1.5
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Example: Pay and Job Satisfaction II

An employee is to be drawn at random.  Let X=0 if the 

employee is poorly paid and X=1 if she is well paid. Let Y= 

0 if her job satisfaction low and Y=1 if her job satisfaction is 

high. Using following means & joint distribution, find 

COV(X,Y)

Y

X                                             

Solution: Next slide

	 0 1

0 0.3 0.2
1 0.2 0.3

mx = 0.5

my = 0.5



Copyright © 2009 Cengage Learning

Example, Continued

Solution: Use probability version of         x                  

the formula                                               

x      y   

= 0.075 − 0.05 − 0.05 + 0.075 = 0.05

COV X,Y( ) = x - mx( ) y- mx( )P(x,y)
all y

å
all  x

å

	 0 1

0 0.3 0.2
1 0.2 0.3

x - mx y- my
P(x,y) x- mx( ) y- mx( )P(x,y)

y

0 0 -0.5 -0.5 0.3 0.075

0 1 -0.5 0.5 0.2 -0.05

1 0 0.5 -0.5 0.2 -0.05

1 1 0.5 0.5 0.3 0.075
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Population Coefficient of Correlation…

The coefficient of correlation is calculated in the same way 

as described earlier…
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Laws…

We can derive laws of expected value and variance for the 

sum of two variables as follows…

E(X + Y) = E(X) + E(Y)

V(X + Y) = V(X) + V(Y) + 2COV(X, Y)

IF X and Y are independent, COV(X, Y) = 0 and thus 

V(X + Y) = V(X) + V(Y)   for X and Y independent
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More Laws…

We also have laws of covariance…

• COV(X,X) = V(X) 

• COV(X+c, Y+d) = COV(X,Y)

• COV(cX,dY) = cdCOV(X,Y)

Again, If X and Y are independent, COV(X, Y) = 0
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Example: Portfolio Diversification and Asset Allocation

Consider an investor who forms a portfolio, consisting of 

only two stocks, by investing $4,000 in one stock and $6,000 

in a second stock. Suppose that the results after 1 year are: 

One-Year Results

Initial Value of Investment Rate of Return

Stock Investment After One Year on Investment

1 $4,000 $5,000 R1 = .25 (25%)

2 $6,000 $5,400 R2 =-.10 (-10%)

Total $10,000 $10,400 Rp = .04 ( 4%) 

OR

Rp = w1R1 + w2R2 = (.4)(.25) + (.6)(-.10) = .04
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Portfolio Diversification and Asset Allocation

Mean and Variance of a Portfolio of Two Stocks

E(Rp) = w1 E(R1) + w2 E(R2)

V(Rp) =  w1
2 V(R1) + w2

2 V(R2) + 2w1w2 COV(R1, R2)

= w1
2σ1

2 + w2
2σ2

2 + 

where w1 and w2 are the proportions or weights of 

investments 1 and 2, E(R1) and E(R2) are their expected 

values, σ1 and σ2 are their standard deviations, and    is the 

coefficient of correlation 

2w1w2rs1s 2

r
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Example 7.8

An investor forms a portfolio by putting 25% of his money 

into McDonald’s stock and 75% into Cisco Systems stock. 

Suppose that the expected returns will be 8% and 15%, 

respectively, with standard deviations 12% and 22%, 

respectively.  

a Find the expected return on the portfolio.

b Compute the standard deviation of the returns on the 

portfolio assuming that

(i) the two stocks’ returns are perfectly positively correlated

(ii) the coefficient of correlation is .5

(iii) the two stocks’ returns are uncorrelated
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Example 7.8 Solution

a The expected values of the two stocks are

E(R1) = .08 and E(R2) = .15

The weights are w1 = .25 and w2 = .75. 

Thus,

E(R2) = w1E(R1) + w2E(R2) 

= .25(.08) + .75(.15)

= .1325 
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Example 7.8 Solution

The standard deviations are σ1 = .12 and σ2 = .22.  Thus,

When  

V(Rp) = .0281 + .0099(1) = .0380 

When 

V(Rp) = .0281 + .0099(.5) = .0331 

When 

V(Rp) = .0281 + .0099(0) = .0281 

V (Rp) = w1

2s1

2 +  w2

2s 2

2 +  2w1w2rs1s 2

             =  (.252 )(.122 ) +  (.752 )(.222 ) +  2 .25( ) .75( )r .12( ) .22( )

    =  .0281 +  .0099r

r = 1

r = 0.5

r = 0
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Portfolio Diversification in Practice

The formulas introduced in this section require that we know 

the expected values, variances, and covariance (or 

coefficient of correlation) of the investments we’re 

interested in. 

The question arises: How do we determine these parameters? 

The most common procedure is to estimate the parameters 

from historical data, using sample statistics. 
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Bernoulli Random Variable

• Has two outcomes:

• X = 1 if “success”

0 if “failure”

• P(X=1) = p       (probability of “success”)

• E.g. Fair coin:  p = 0.5

• Recall the Indicator or Dummy Variable

• This is a Random Indicator Variable

• Try at home:  Find E[X], VAR(X)
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Binomial Distribution…

The binomial distribution is the probability distribution that 

results from doing a “binomial experiment”. Binomial 

experiments have the following properties:

Fixed number of trials, represented as n.

Each trial has two possible outcomes, a “success” and a 

“failure”.

P(success)=p (and thus: P(failure)=1–p), for all trials.

The trials are independent, which means that the outcome of 

one trial does not affect the outcomes of any other trials.
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Binomial Random Variable…

The binomial random variable counts the number of 

successes in n trials of the binomial experiment. It can take 

on values from 0, 1, 2, …, n. Thus, its a discrete random 

variable.

To calculate the probability associated with each value we 

use combintorics:

for x=0, 1, 2, …, n



Copyright © 2009 Cengage Learning

Simple Example: 2 Coin tosses

• Please try this example at home:

• Toss Fair Coin Twice

• X = number of Heads

• What is the probability distribution of X

• Solve once using intuition

• Solve again using formula
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Pat Statsdud…

Pat Statsdud is a (not good) student taking a statistics course. 

Pat’s exam strategy is to rely on luck for the next quiz. The 

quiz consists of 10 multiple-choice questions. Each question 

has five possible answers, only one of which is correct. Pat 

plans to guess the answer to each question.

What is the probability that Pat gets no answers correct?

What is the probability that Pat gets two answers correct?
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Pat Statsdud…

n=10, and P(success) = .20

What is the probability that Pat gets no answers correct?

I.e. # success, x,  = 0; hence we want to know P(x=0)

Pat has about an 11% chance of getting no answers correct

using the guessing strategy.
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Pat Statsdud…

n=10, and P(success) = .20

What is the probability that Pat gets two answers correct?

I.e. # success, x,  = 2; hence we want to know P(x=2)

Pat has about a 30% chance of getting exactly two answers

correct using the guessing strategy.
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Binomial Distribution…

As you might expect, statisticians have developed general 

formulas for the mean, variance, and standard deviation of a 

binomial random variable. They are:
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Poisson Distribution…

Named for Simeon Poisson, the Poisson distribution is a 

discrete probability distribution and refers to the number of 

events (a.k.a. successes) within a specific time period or 

region of space. For example:

The number of cars arriving at a service station in 1 hour. (The 

interval of time is 1 hour.) 

The number of flaws in a bolt of cloth. (The specific region is a 

bolt of cloth.)

The number of accidents in 1 day on a particular stretch of 

highway. (The interval is defined by both time, 1 day, and space, 

the particular stretch of highway.)
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The Poisson Experiment…

Like a binomial experiment, a Poisson experiment has four 

defining characteristic properties:

The number of successes that occur in any interval is 

independent of the number of successes that occur in any 

other interval.

The probability of a success in an interval is the same for all 

equal-size intervals 

The probability of a success is proportional to the size of the 

interval. 

The probability of more than one success in an interval 

approaches 0 as the interval becomes smaller.
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Poisson Distribution…

The Poisson random variable is the number of successes 

that occur in a period of time or an interval of space in a 

Poisson experiment.

E.g. On average, 96 trucks arrive at a border crossing

every hour.

E.g. The number of typographic errors in a new textbook 

edition averages 1.5 per 100 pages.

successes

time period

successes (?!) interval
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Poisson Probability Distribution…

The probability that a Poisson random variable assumes a 

value of x is given by:

and e is the natural logarithm base.

FYI:
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Example 7.12…

A statistics instructor has observed that the number of 

typographical errors in new editions of textbooks varies 

considerably from book to book. After some analysis he 

concludes that the number of errors is Poisson distributed 

with a mean of 1.5 per 100 pages. The instructor randomly 

selects 100 pages of a new book. What is the probability that 

there are no typos? 

That is, what is P(X=0) given that µ = 1.5?

“There is about a 22% chance of finding zero errors”


