Eco 2740: Economic Statistics Fall, 2019. Sampling Distribrutions (Chapter 9)

Recall: Inferential Statistics

- Using the sample (we do see) to learn about the population (we don't see).
- We use a sample statistics like \bar{x} to estimate analogous population parameter like
- How variable is \bar{x} ? What is its distribution?

Sample observations as random variables

- Random Sampling: Your observations $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$ were drawn at random from the population.
- Before this particular group of observations were selected, the values that $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$ would take was random since it depended on which observations got selected to be the sample.
- So we can think about them as random variables:

$$
X_{1}, X_{2}, \ldots, X_{n}
$$

- What is the distribution of these observations?

The Distribution of a Random Sample

- Suppose $\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{n}}$ will be selected by random sampling from a population with population mean and population variance ?
- Because of random sampling, the X 's will be independent of each other and $\operatorname{COV}\left(\mathrm{X}_{\mathrm{i}}, \mathrm{X}_{\mathrm{j}}\right)=0$ for $i \quad j$
- Because they are all drawn at random from the same population, they will all have the same distribution. We say that they are identically distributed.
- And because they are drawn from the population they have population mean of $E\left[X_{i}\right]=$ and population variance $\operatorname{VAR}\left(X_{i}\right)={ }^{2}$

Distribution of Random Sample Continued

- We say that the Xi are independent and identically distributed (i.i.d.) with mean $E\left[X_{i}\right]=$ and variance $\operatorname{VAR}\left(X_{i}\right)={ }^{2}$
- Usually we use short-hand notation to write this as:

$$
X_{1}, X_{2}, \square, X_{n} \sim \text { i.i.d. }\left(,^{2}\right)
$$

- An important special case is the one in which the Xi are also normally distributed, in which we write

$$
X_{1}, X_{2}, \square, X_{n} \sim \text { i.i.d. } \mathrm{N}\left(,{ }^{2}\right)
$$

Sample Statistics are also random variables

- Let's focus on $\bar{x}=\frac{1}{n}{ }_{i=1}^{n} x_{i}$ as an example
- We can think of it as a random variable generated by the following experiment:

1. Select n observations at random from the population
2. Take their average

- Suppose that we repeated this experiment again and drew a new random sample from the population?
- Would we draw the same $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{\mathrm{n}}$? Would we get the same \bar{x} ?
- How different is it from rolling the dice twice?

The Expectation and Variance of the Sample Mean

- Using the laws of expectations and variances we can obtain:

$$
\begin{aligned}
& E[\bar{X}]= \\
& \operatorname{VAR}(\bar{X})=\frac{2}{n}
\end{aligned}
$$

ON BLACKBOARD: PROVIDE STEP BY STEP DERIVATIONS FOR TWO FORMULAS ABOVE

(if you missed class then please ask a friend for notes on this important topic)

Distribution of Sample Mean in Special Case of Normally Distributed Random Sample

- Since we have a normally distributed random sample:

$$
X_{1}, X_{2}, \square, X_{n} \sim \text { i.i.d. } \mathrm{N}\left(,^{2}\right)
$$

- And $\bar{X}=\frac{1}{n}_{i=1}^{n} X_{i}$ is just a linear combination of the X_{i}

$$
n_{i=1}
$$

- Thus the sample mean is also a normal random variable
- And we know it has mean

$$
\bar{X} \sim N\left(, \frac{2}{n}\right)
$$

The Central Limit Theorem

- What if we have no idea what the distribution of X_{i},
- But, we do have a random sample

$$
X_{1}, X_{2}, \square, X_{n} \sim \text { i.i.d. }\left(,^{2}\right)
$$

- Then what is the distribution of \bar{X} ?
- In small samples - we have no idea!
- In large samples the Central Limit Theorem (CLT) tells us that \bar{X} is approximately normal.
- Since it still has the same mean and variance:

$$
\bar{X} \sim \operatorname{Aprox} \mathrm{~N}\left(\mu, \sigma^{2} / n\right) \text { for large } \mathrm{n}
$$

CLT in Pictures...

- Roll a single six-sided die once:
- X_{1} and X_{2} is outcome of rolls 1 and 2
- $\bar{X}=\frac{1}{2}\left(X_{1}+X_{2}\right)$ is sample mean

Distribution of X_{1}

Distribution of \bar{X}

Sampling Distribution: The Concept

- What we just derived is called the sampling distribution of \bar{X}
- It is really just the distribution of \bar{X}
- But because \bar{X} is a sample average we add "sampling"
- It reflects the idea that \bar{X} is random because the sample we happen to select is itself random.
- As a thought experiment, we could imagine repeating the random sampling exercise over and over a billion times to generate an entire population of \bar{X} values each based on a different random sample.
- The particular \bar{X} we obtained is just one of these possible \bar{X} values based on just one of the samples we could draw.

Example 9.1(a)...

The foreman of a bottling plant has observed that the amount of soda in each "32-ounce" bottle is actually a normally distributed random variable, with a mean of 32.2 ounces and a standard deviation of .3 ounce.

If a customer buys one bottle, what is the probability that the bottle will contain more than 32 ounces?

$$
X \sim N\left(=32.2, \quad 2=(0.3)^{2}\right)
$$

$\mathrm{P}(\mathrm{X}>32)=\mathrm{P}\left(\frac{\mathrm{X}-\mu}{\sigma}>\frac{32-32.2}{.3}\right)=\mathrm{P}(\mathrm{Z}>-.67)=1-.2514=.7486$

Example 9.1(b)...

If a customer buys a carton of four bottles, what is the probability that the mean amount of the four bottles will be greater than 32 ounces?

$$
X \sim N\left(=32.2, \quad 2=(0.3)^{2}\right)
$$

$\bar{X} \sim N\left(, \frac{2}{X}\right)$ for $\frac{2}{\bar{X}}=2 / n=(0.3)^{2} / 4=(0.3 / 2)^{2}=0.15^{2}$

$$
P(\bar{X}>32)=P\left(\frac{\bar{X}-\mu_{\bar{x}}}{\sigma_{\bar{x}}}>\frac{32-32.2}{.15}\right)=P(Z>-1.33)=.9082
$$

Graphically Speaking...

what is the probability that one bottle will contain more than 32 ounces?
what is the probability that the mean of four bottles will exceed 32 oz ?

Chapter-Opening Example-Graduate Salaries

A B-School dean claims that the average salary of the school's graduates one year after graduation is $\$ 800$ per week with a standard deviation of $\$ 100$.

A skeptical second-year student double checks the claim by surveying 25 of last year's graduates and recording their weekly salary. He obtains a sample mean to be $\$ 750$.

What is the probability that a sample of 25 graduates would have a mean of $\$ 750$ or less if the Dean's claim is correct?

Chapter-Opening Example

Salaries of a Business School's Graduates

He does a survey of 25 people who graduated one year ago and determines their weekly salary.

He discovers the sample mean to be $\$ 750$.

To interpret his finding he calculates the probability that a sample of 25 graduates would have a mean of $\$ 750$ or less when the population mean is $\$ 800$ and the standard deviation is $\$ 100$.

Chapter-Opening Example

We seek $\quad \mathrm{P}(\overline{\mathrm{X}}<750) \quad$ If the dean is correct then:

$$
\overline{\mathrm{X}} \text { is approx } \mathrm{N}\left(\mu_{\overline{\mathrm{x}}}=\mu=800, \sigma^{2} / \mathrm{n}=100^{2} / 25=(100 / 5)^{2}=20^{2}\right)
$$

$$
\begin{aligned}
& P(\bar{X}<750) \\
& =P\left(\frac{\bar{X}}{\bar{x}}<\frac{750 \quad 800}{20}\right) \\
& =P(Z<2.5) \\
& =.0062
\end{aligned}
$$

Pretty small chance - this does not seem to support the Dean's claim.

