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Outlines

Conditional forecasting in ARMA models Jump [Self-study if you
have interest :)]

Constructing out of sample forecasts Jump [Online Lecture]
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Conditional forecasting in ARMA models

AR(1) forecast

AR(2) forecast

MA(1) forecast

MA(2) forecast

ARMA(1,1) forecast

ARMA(p,q) forecast
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One and multi-period ahead forecasts

Let k = forecast horizon

At time t:

know yt
forecast yt+k - k period ahead forecast

∗ k = 1: 1 period forecast
e.g. daily data: forecast Monday’s value on Sunday

∗ k > 1: multi-period forecast
e.g. daily data: forecast Friday’s value on Sunday

General principle

Date conditional expectation by time you form forecast:
Et −→ forecast made at time t −→ No variables dated t + 1, t + 2, ...
can be used in forecast (don’t know there yet)
The variable you want to forecast is dated t + k

∗ want to forecast: yt+k

Putting this together, my forecast of yt+h at time t is Etyt+k
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Specific models: AR(1) - 1 period forecast

1). AR(1)

yt = a0 + a1yt−1 + εt ; Et−1εt = 0

1-period forecast:

yt+1 = a0 + a1yt + εt

Etyt+1 = a1 + a1 × Etyt︸︷︷︸
known at time t

+ Et [εt+1]︸ ︷︷ ︸
=0 by assumption

Etyt+1 = a0 + a1yt infeasible forecast

ŷt+1 = a0 + a1yt feasible forecast
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Specific models: AR(1) - 2 period forecast

2-period forecast: (Etyt+2)

yt+2 = a0 + a1yt+1 + εt+2 (1)

Etyt+2 = a0 + a1Et( yt+1︸︷︷︸
RV at time t

) + Etεt+2

We need the useful property - Law of Iterative Expectations (L.I.E)
LIE detail

We use L.I.E to show that Et εt+2 = 0

Et(εt+2) =
by LIE

Et{ Et+1(εt+2)︸ ︷︷ ︸
=0 by assumption

} = Et [0] = 0
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Specific models: AR(1) - 2 period forecast cont.

Plugging this result back into (6) gives us:

Etyt+2 = a0 + a1Et [yt+1] + Etεt+2︸ ︷︷ ︸
=0

(2)

Etyt+2 = a0 + a1Et [yt+1] (infeasible)

Now substitute Et [yt+1] = a0 + a1yt into (2), we have

Etyt+2 = a0 + a1[a0 + a1y2] (3)

Etyt+2 = a0(1 + a1) + a21yt (infeasible)

(2) and (3) are infeasible forecasts
The feasible analog to (2) is

ŷt+2 = â0 + â1ŷt+1; ŷt+1 = â0 + â1yt (4)

which is convenient if we want to forecast both yt+1 and yt+2.
The feasible analog to (3) is

ŷt+2 = â0(1 + â1) + â21yt (5)
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Specific models: AR(1) - 3 period forecast

3-period forecast:

yt+3 = a0 + a1yt+2 + εt+2

Etyt+3 = a0 + a1Etyt+2 + Etεt+3

note that Etεt+3 =
by LIE

Et{ Et+2εt+3︸ ︷︷ ︸
=0 by assumption

} = 0

Etyt+3 = a0 + a1Etyt+2 (infeasible) (6a)

ŷt+3 = a0 + a1ŷt+2 (feasible) (6b)

Chaoyi Chen (BCE & MNB) Conditional forecasting in ARMA models 8 / 45



Specific models: AR(1) - 3 period forecast cont.

OR plug in (3) for Etyt+2 = a0(1 + a1) + a21yt to get

Etyt+3 = a0 + a1Etyt+2

= a0 + a1{a0(1 + a1) + a21yt}
= a0 + a0(a1 + a21) + a31yt

Etyt+3 = a0(1 + a1 + a21) + a31yt (7a)

which is made feasible by ŷt+3 = â0(1 + â1 + â21) + â31yt (7b)
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Specific models: AR(1) - K period forecast

Now we can observe the pattern: Extending (6a) and (6b)

Etyt+k = a0 + a1Etyt+k−1 (8a)

ŷt+k = â0 + â1ŷt+k−1 (8b)

(8b) is easy to implement if you want to forecast all of
yt+1, yt+2, ..., yt+k

OR extending (7a) and (7b)

Etyt+k = a0(1 + a1 + a21 + ... + ak−11 ) + ak1yt = a0
k−1
∑
i=0

ai1 + ak1yt

(9a)

ŷt+k = â0
k−1
∑
i=0

âi1 + âk1yt (9b)
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Compare to unconditional forecast

Recall: Unconditional forecast made using unconditional expectation
(E [yt ])
So, solve for E [yt ] assuming stationarity

yt = a0 + a1yt−1 + εt

E [yt ] = a0 + a1E [ yt−1︸︷︷︸
still random at time −∞

] + E [εt ]

Using the L.I.E,

E [εt ] =
by L.I.E

E{ Et−1(εt )︸ ︷︷ ︸
=0 by assumption

} = 0 =⇒ E [yt ] = a0 + a1E [yt−1]

By stationarity: E [yt ] = E [yt−1] =⇒ E [yt ] = a0 + a1E [yt ]

=⇒ E [yt ] = a1E [yt ] = a0 =⇒ (1− a1E [yt ]) = a0

E [yt ] =
a0

1− a1
(10a)

With feasible version:
â0

1− â1
or simply ȳ (10b)
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Compare to unconditional forecast cont.

Now compare (10) to (9)

From (9), Etyt+k = a0 ∑k−1
i=0 ai1 + ak1yt .

What happens for large k?

Becasue —a1 < 1— stationarity =⇒ ak1 −→ 0 as k −→ ∞

=⇒ lim
k−→∞

Etyt+k = a0
∞

∑
i=0

ai1

= a0
1

1− a1
=

a0
1− a1

= E [yt+k ]

=⇒ lim
k−→∞

Etyt+k = E [yt+k ] (11)

As forecast horizon increases our conditional forecast is more
approaching to our unconditional forecast

This is because the information we condition on only useful for
predicting near future
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Compare to unconditional forecast intuition

In other words, in there is a reversion to unconditional mean in long
run

If today’s yt is about mean, we expect tomorrow & next day’s yt+1 &
yt+2 also to be above mean. Conditional forecast gives this

But in 40 years from now, we expect yt+k to revert back to mean

In other words, yt has almost no information about yt+40 years. So
conditioning on yt doesn’t help & we might as well use unconditional
forecast Plot
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Specific models: AR(2) - 1 period forecast

2). AR(2)

yt = a0 + a1yt−1 + a2yt−2 + εt ; Et−1εt = 0

1 period ahead forecast

yt+1 = a0 + a1yt + a2yt−1 + εt+1

=⇒ Etyt+1 = a0 + a1Et [ yt︸︷︷︸
known at t

] + a2Et [ yt−1︸︷︷︸
known at t

] + Et [εt+1]︸ ︷︷ ︸
=0

=⇒ Etyt+1 = a0 + a1yt + a2yt−1 (12a)

Feasible version : ŷt+1 = â0 + â1yt + â2yt−1 (12b)
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Specific models: AR(2) - 2 period forecast

2 period ahead forecast

yt+2 = a0 + a1yt+1 + a2yt + εt+2

=⇒ Etyt+2 = a0a1Et [ yt+1︸︷︷︸
still random at t

] + a2Et [ yt︸︷︷︸
known at t

] + Et [ εt+2︸︷︷︸
=0 by LIE

]

−→ Etyt+2 = a0 + a1Et [yt+1] + a2yt (13a)

Feasible version : ŷt+2 = â0 = â1ŷt+1 + â2yt (13b)

We can substitute in for Etyt+1 but this gets tedious, so I’ll skip this
and let you try it at home :)
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Specific models: AR(2) - 3 period forecast

3 period ahead forecast

yt+3 = a0 + a1yt+2 + a2yt+1 + εt+3

Etyt+3 = a0 + a1Et [ yt+2︸︷︷︸
random at t

] + a2Et [ yt+1︸︷︷︸
random at t

] (14a)

Can be implemented using ŷt+3 = â0 = â1ŷt+2 + â2ŷt+1 (14b)

Chaoyi Chen (BCE & MNB) Conditional forecasting in ARMA models 16 / 45



Specific models: AR(2) - k period forecast

k period ahead forecast

yt+k = a0 + a1yt+k−1 + a2yt+k−2 + εt+k

Etyt+k = a0 + a1Et [ yt+k−1︸ ︷︷ ︸
random at t

] + a2Et [ yt+k−2︸ ︷︷ ︸
random at t

] (15a)

Can be implemented using ŷt+k = â0 = â1ŷt+k−1 + â2ŷt+k−2 (15b)
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Specific models: MA(1) Model - 1 period forecast

3). Forecasting using MA(1) model

yt = a0 + εt + β1εt−1; Et−1εt = 0 MA(1)

One period ahead forecast

yt+1 = a0 + εt+1 + β1εt

Etyt+1 = a0 + Et [ εt+1︸︷︷︸
unknown at t

]

︸ ︷︷ ︸
=0 by assumption

+β1Et [ εt︸︷︷︸
known at t

]

−→ Etyt+1 = a0 + β1εt (16)

Made feasible by ŷt+1 = â0 + β̂1 ε̂t

â0, β̂1 estimated by ML on eviews, matlab, R, stata etc. ε̂t is fitted
(not forecasted) residual usually software gives you ε̂t
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Specific models: MA(1) Model - 1 period forecast cont.

Or if ε̂1, ..., ε̂T not given:

Initialize by assuming:

y0 = ε0 = ε̂0 = 0 (17)

Then solve for ε̂1, ..., ε̂T using the followings
The fitted equations:

yt = â0 + ε̂t + β̂1 ε̂t−1 (18)

(t = 1) =⇒ y1 = â0 + ε̂1 + β̂1 ε̂0︸︷︷︸
=0 by initialization

= â0 + ε̂1

Now solve for ε̂1 : ε̂1 = y1︸︷︷︸
from data

− â0︸︷︷︸
from software

(19)
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Specific models: MA(1) Model - 1 period forecast cont.

Next

(t = 2) =⇒ y2 = â0 + ε̂2 + β̂1 ε̂1

Now solve for ε̂2 ε̂2 = y2︸︷︷︸
from data

− â0 − β̂1︸ ︷︷ ︸
from software

× ε̂1︸︷︷︸
solved for in (19)

(20)

So, we assumed/set ε̂0 = 0, then sovled for ε̂1. And once we had ε̂1
we could solve for ε̂2. Now we have ε̂2, we can solve for ε̂3 and so on.
Continue recursively using

(t = t) =⇒ yt = â0 + ε̂t + β̂1 ε̂t−1

solve for ε̂t = yt︸︷︷︸
from data

− â0 − β̂1︸ ︷︷ ︸
from software

× ε̂t−1︸︷︷︸
solved for this already

(21)

Until we finally get to ε̂T = yT − â0 − β̂1 ε̂T−1
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Specific models: MA(1) Model - 2 period forecast

Two period ahead forecast in MA(1)

yt = a0 + εt + β1εt−1, Et−1εt = 0

=⇒ yt+2 = a0 + εt+2 + β1εt+1

=⇒ Etyt+2 = a0 + Et [εt+2]︸ ︷︷ ︸
=0 by LIE

+β1 Et [εt+1]︸ ︷︷ ︸
=0 by assumption

So our forecast is:

ŷt+2|t = â0
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Specific models: MA(1) Model - k period forecast and
unconditional forecast

K-period forecast for k ≥ 2

yt+k = a0 + εt+k + β1εt+k−1

Etyt+k = a0 + Etεt+k︸ ︷︷ ︸
=0 for k ≥ 1

+β1 Etεt+k−1︸ ︷︷ ︸
=0 for k ≥ 2

= a0

Unconditional forecast

E [yt+k ] = a0 + E [εt+k ]︸ ︷︷ ︸
=0 by LIE

+β1 E [εt+k−1]︸ ︷︷ ︸
=0 by LIE

= a0
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Specific models: MA(1) Model - remarks and intuition

In MA(1) model impact of shock lasts 2 periods

So this period and next period share a common shock (εt)

So this period’s value helps forecast next period’s value

But this period does NOT share a shock with two periods later (εt
does not show up in formula for yt+2)

So yt does not help forecast yt+2

And we revert back to the unconditional forecast
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Specific models: MA(2) Model - 1 period forecast

4). MA(2) model:

yt = a0 + εt + β1εt−1 + β2εt−2; Et−1εt = 0

One-period ahead forecast:

yt+1 = a0 + εt+1 + β1εt + β2εt−1

=⇒ Etyt+1 = a0 + Et [εt+1] + β1εt + β2εt−1

=⇒ ŷt+1|t = â0 + β̂1 ε̂t + β̂1 ε̂t−1
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Specific models: MA(2) Model - 2 and more period
forecast

Two-period ahead forecast:

yt+2 = a0 + εt+2︸︷︷︸
random at t

+β1 εt+1︸︷︷︸
random at t

+β2 εt︸︷︷︸
NR at t

=⇒ Etyt+2 = a0 + β2εt by LIE and assumption

=⇒ ŷt+2 = â0 + β̂2 ε̂t (2 period forecasts)

k-period ahead forecast (k ≥ 3)):

yt+k = a0 + εt+k︸︷︷︸
random at t

+β1 εt+k−1︸ ︷︷ ︸
random at t

+β2 εt+k−2︸ ︷︷ ︸
random at t

=⇒ Etyt+k = a0 (3-periods forecasts)
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Specific models: ARMA(1,1) Model - 1 period forecast

5). ARMA(1,1) model:

yt = a0 + a1yt−1 + εt + β1εt−1; Et−1εt = 0

One-period ahead forecast:

yt+1 = a0 + a1yt + εt+1 + β1εt

=⇒ Etyt+1 = a0 + a1yt + Etεt+1︸ ︷︷ ︸
=0

+β1 εt︸︷︷︸
NR at t

= a0 + a1yt + β1εt

ŷt+1|t = â0 + â1yt + β̂1 ε̂t
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Specific models: ARMA(1,1) Model - 2 period forecast

Two-period ahead forecast:

yt+2 = a0 + a1yt+1 + εt+2 + β1εt+1

Etyt+2 = a0 + a1Et [yt+1] + Et [εt+2]︸ ︷︷ ︸
=0

+β1 Et [εt+1]︸ ︷︷ ︸
=0

=⇒ ŷt+2|t = â0 + â1ŷt+1|t
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Specific models: ARMA(1,1) Model - k period forecast

k-period ahead forecast (k > 2):

yt+k = a0 + a1yt+k−1 + εt+k + β1εt+k−1

=⇒ Etyt+k = a0 + a1Et [yt+k−1] + Et [εt+k ]︸ ︷︷ ︸
=0

+β1 Et [εt+k−1]︸ ︷︷ ︸
=0

= a0 + a1Et [yt+k−1]

ŷt+k |t = â0 + â1ŷt+k−1|t for k > 2

So, in summary

ŷt+k |t =

{
â0 + â1yt + β̂1 ε̂t , for k=1

â0 + â1ŷt+k−1|t , for k≥ 2
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Specific models: ARMA(p,q) Model - k period forecast

6). ARMA(p,q) model:

yt = a0 + a1yt−1 + ... + apyt−p + εt + β1εt−1 + ... + βqεt−q

k-period ahead forecast

yt+k = a0 + a1yt+k−1 + ... + apyt+k−p + εt+K + β1εt+k−1 + ...

+ βqεt+k−q

=⇒ Etyt+k = a0 + a1Et [yt+k−1] + ... + apEt [yt+k−p ] + Etεt+k︸ ︷︷ ︸
=0

+ β1Etεt+k−1 + ... + βqEtεt+k−q

=⇒ Etyt+k = a0 +
p

∑
i=1

aiEtyt+k−i +
q

∑
j=1

βjEtεt+k−j
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Specific models: ARMA(p,q) Model - k period forecast
cont.

Note that

Etyt+k−i =

{
yt+k−i , for t + k − i ≤ t ⇐⇒ i ≥ k

Etyt+k−i , for i < k

Etεt+k−j =

{
εt+k−j , for t + k − j ≤ t ⇐⇒ j ≥ k

0 , for j < k

Therefore,

Etyt+k =



a0 + ∑k−1
i=1 Etyt+k−i + ∑p

i=k ajyt+k−i

+∑q
j=k βj εt+k−j , for k ≤ p &k ≤ q

a0 + ∑p
i=1 aiEtyt+k−i , for k > p &k > q

a0 + ∑k−1
i=1 aiEtyt+k−i + ∑p

j=k ajyt+k−j , for p ≥ k ≥ q

a0 + ∑p
i=1 aiEtyt+k−i + ∑q

j=k βj εt+k−j , for q ≥ k ≥ p
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Specific models: ARMA(p,q) Model - k period forecast
cont.

So in practice using

ŷt+k |t =



â0 + ∑k−1
i=1 âi ŷt+k−i |t + ∑p

i=k âiyt+k−i

+∑q
j=k β̂j ε̂t+k−j , for k ≤ p &k ≤ q

â0 + ∑p
i=1 âi ŷt+k−i |t , for k > p &k > q

â0 + ∑k−1
i=1 âi ŷt+k−i |t + ∑p

i=k âiyt+k−i , for p ≥ k ≥ q

â0 + ∑p
i=1 âi ŷt+k−i |t + ∑q

j=k β̂j εt+k−j , for q ≥ k ≥ p
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Specific models: ARMA(p,q) Model - remark

Rather than trying to memorize or reproduce this general case, it is
probably better practice to derive the forecast for a number of specific
values of q & q.

As practice, I suggest working out the forecasts yourself the following
models: ARMA(2,1), ARMA(1,2) & ARMA(2,2)

If you want additional practice, try ARMA(2,3) & ARMA(3,2)
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Constructing out of sample forecasts

Approach 1: Estimation and forecast samples

Approach 2: recursive forecasting

Approach 3: rolling samples
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In sample prediction versus out-of-sample forecasts

Suppose you estimate the regression:

yt = β0 + βxt−1 + εt

using data x1, x2, ..., xT−1 & y2, y3, ..., yT .

Let ŷt = β̂0 + β̂1xt−1

ŷt=

{
in sample prediction for t ≤ T

out-of-sample forecast for t > T

Key point: cannot data that you are trying to forecast to fit the mode
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Generating a sample out of sample forecasts

May want to evaluate forecast method

∗ How well are we forecasting?
∗ IS another method better?

To answer this, essentially want to measure, estimate, or test forecast
accuracy

To do this, we need a sample of forecasts and forecast errors large
enough for meaningful statistical inference
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Approach 1: Estimation and forecast samples

Approach 1: Estimation and Forecast Samples

Full sample: S = {y1, y2, ..., yT1
}

Rather than estimate model using full sample S , split it into 2
subsamples
Estimation sample S1 = {y1, y2, ..., yT1

}
Forecast sample S2 = {yT1+1, yT1+2, ..., yT }
Estimate the model using only the data in the estimation sample
Use the resulting estimates to produce forecasts in the forecast sample
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Approach 1: example

Example: (yt − ȳ) = a1(yt−1 − ȳ) + εt
I have data on y1, y2, ..., y200

S = {y1, y2, ..., y200}
S1{y1, y2, ..., y100}
S2 = {y101, y102, ..., y200}

Estimation (use S1):

ȳ =
1

100

100

∑
t=1

yt

â1 =
∑100

t=2(yt−1 − ȳ)(yt − ȳ)

∑100
t=2(yt−1 − ȳ)2

 (22)

Forecast y101, y102, ..., y200
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Approach 1: example cont.

Note that

(yt − ȳ) = â1(yt−1 − ȳ) + ε̂t

yt = ȳ + â1(yt−1 − ȳ) + ε̂t

yt = ȳ(1− â1) + â1yt−1 + ε̂t

=⇒ ŷt+1|t = (1− â1)ȳ + â1yt−1

Hence,

ŷ101|100 = (1− â1ȳ) + â1y100; e101|100 = ŷ101|100 − y101

ŷ102|101 = (1− â1ȳ) + â1y101; e102|101 = ŷ102|101 − y102

...

ŷ200|199 = (1− â1ȳ) + â1y199; e200|199 = ŷ200|199 − y200

This gives us a sample of:
∗ 100 forecasts: {ŷ101|100, ŷ101|101, ..., ŷ200|199}
∗ And 100 forecast errors: {e101|100, e102|101, ..., e200|199}
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Approach 1: example pseudo code

What does the program to this look like?
Load data=datafile;
Estimation:
S1=data[row 1 to 100];
=mean(S1);
â1=AR1(S1);

Forecasts:
S2 =data[row 101 to 200];

Store Forecasts = 1 by 100 matrix of zeros;

Store Errors = 1 by 100 matrix of zeros;

t=100;

do until t>199;

ŷt+1|t = (1− â1)ȳ + â1yt;
et+1|t = ŷt+1|t ;
Store Forecast[row t-99]=ŷt+1|t ;
Store Error[row t-99]=et+1|t ;
t=t+1;

end loop

Then our forecasts would be stored in the matrices: Store Forecast &
Store Error & we could use to evaluate our forecasts.
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Approach 2: recursive forecasting

Approach 2: Recursive Forecasting

S = {y1, y2, ..., yT } full sample
Now break into:

S1 = {y1, y2, ..., yT1
}= training sample

S2 = {yT1+1, yT1+2, ..., yT }= recursive forecast sample

We forecast yT1+1, yT1+2, ..., yT
To forecast yT1+1, we

1 Estimate model using y1, y2, ..., yT1

2 Use estimated model to forecast yT1+1

So far, that’s no different than approach 1
However, we now re-estimate our model using data up to yT1+1 in
order to forecast yT1+2

And we estimate using data up to yT1+2 to forecast yT1+3...
Etc
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Approach 2: example

Example: (yt − ȳ) = a1(yt−1 − ȳ) + εt
sample y1, y2, ..., y200
S1 = {y1, y2, ..., y100} S2 = {y101, y102, ..., y200}
Step 1: estimate using y1, y2, ..., y100
ȳ100 =

1
100 ∑100

t=1 yt

â1,100 =
∑100

t=2(yt−1−ȳ100)(yt−ȳ100)
∑100

t=2(yt−1−ȳ100)2

Step 2: forecast y101
ŷ101|100 = (1− â1,100)ȳ100 + â1,100y100

Step 3: re-estimate using y1, y2, ..., y101
ȳ101 =

1
101 ∑101

t=1 yt

â1,101 =
∑101

t=2(yt−1−ȳ101)(yt−ȳ101)
∑101

t=2(yt−1−ȳ101)2

Step 4: forecast y102 ŷ102|101 = (1− â1,101)ȳ101 + â1,101y101

...
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Approach 2: example cont.

Generally, re-estimate using y1, y2, ..., yt (100 ≤ t ≤ 199)
ȳt =

1
s ∑t

s=1 ys

â1,t =
∑t

s=2(ys−1−ȳt )(ys−ȳt )
∑t

s=2(ys−1−ȳt )2
And forecast yt+1:
ŷt+1|t = (1− â1,t)ȳt + â1,tyt

Again, this produces a sample of forecasts:
{ŷ101|100, ŷ102|101, ..., ŷ200|199} along with a corresponding sample of
forecast errors

Chaoyi Chen (BCE & MNB) Conditional forecasting in ARMA models 42 / 45



Approach 2: example pseudo code

What might the program code for this look like?
load data =datafile;

Estimation and Forecast:
Store Error = 1 by 100 matrix of zeros;
Store Forecast = 1 by 100 matrix of zeros;
t=100;
do until t>199;
S=data[rpw 1 to t];
ȳt=mean(S);
â1,t =AR1(S);
ŷt+1|t = (1− â1,t )ȳ + â1,tS[row t]︸ ︷︷ ︸

yt

;

Store Forecast[row t-99]=ŷt+1|t ;
errort+1 = ŷt+1|t -data[row t+1]︸ ︷︷ ︸

yt+1

Store Error[row t-99]=errort+1

t=t+1; end loop;
Again, we have a sample of forecats and forecast errors stored in the
matrices “Store Forecast” & “Store Error”
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Approach 3: rolling samples

If we think there are occasional structural breaks, we may not want to
use entire history for estimation since that might include data
generated by an old, pre-break, model

To construct a rolling sample, we choose a fixed sub-sample size (say
η)

Then, we always use the most recent η periods to re-estimate the
model

I.e. to forecast yt+1, we estimate the forecast model using sub-sample
of data: {yt−η+1, yt−η+2, ..., yt}
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Approach 3: example

Example: (yt − ȳ) = a1(yt−1 − ȳ) + εt , y1, y2, .., y200

Say we choose η = 50

Step 1: estimate using y1, y2, ..., y50
ȳ1,1:50 =

1
50 ∑50

s=1 ys

â1,1:50 =
∑50

s=2(ys−1−ȳ1:50)(ys−ȳ1:50)

∑50
s=2(ys−1−ȳ1:50)2

Step 2: forecast y51
ŷ51|50 = (1− â1,1:50)ȳ1:50 + â1,1:50y50

Step 3: re-estimate using y2, y3, ..., y51
ȳ2:51 =

1
50 ∑51

s=2 ys

â1,2:51 =
∑51

s=3(ys−1−ȳ2:51)(ys−ȳ2:51)

∑51
s=3(ys−1−ȳ2:51)2

...
etc
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LIE detail

LIE



Law of Iterative Expectation (L.I.E)

Et(y)︸ ︷︷ ︸
today’s forecast

= Et{ Et+k [y ]︸ ︷︷ ︸
tomorrow’s forecast︸ ︷︷ ︸
today’s forecast
for tomorrow’s forecast

} , any k > 0

Since, intuitively E = E−∞ another form of the L.I.E is :
E [y ] = E [Et [y ]]

back

Chaoyi Chen (BCE & MNB) Conditional forecasting in ARMA models 1 / 2



Back

Chaoyi Chen (BCE & MNB) Conditional forecasting in ARMA models 2 / 2


	Appendix

