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Summary This paper investigates the relationship between democracy and eco-
nomic growth in the context of a linear index threshold regression model. We first in-
troduce the baseline model with endogeneity and propose a two-step smoothed GMM
estimation method. We establish the consistency and derive the asymptotic distribu-
tions of the proposed estimators. We then extend the proposed approach to encompass
the dynamic panel context and employ the model to delve into the impact of democ-
ratization on economic growth. Our findings reveal that democratization’s impact on
growth is nonlinear and depends on the country’s current institutional quality level.
We find a significantly positive effect in both regimes, but countries with higher insti-
tutional quality benefit more from democratization. Furthermore, democracy’s impact
on economic growth is more pronounced in countries with higher education levels than
others, suggesting that education also plays a crucial role in enhancing the positive
effects of democracy on economic growth. Our proposed estimator can be used in other
situations that require more than one threshold variable. In these cases, our hybrid
estimator has less stringent data requirements than an alternative scenario where the
thresholds would enter separately, especially when the threshold variables are corre-
lated.

Keywords: Endogenous threshold effects and regressors, GMM, Index model, De-
mocratization, Threshold Regression.

This supplementary material consists of seven sections. In Section S1, a comprehen-
sive analysis of the non-smoothed GMM estimator for the linear index threshold model
is presented. The proofs of Lemmas 2.1 to 2.4 can be found in Section S2. Section S3
delves into the Monte Carlo simulation study of the proposed estimators’ finite sam-
ple performance. This includes a comparison between the smoothed GMM estimator
and the smoothed least squares estimator by Seo and Shin (2016), considering both ex-
ogenous and endogenous threshold variable designs. The simulation results align with
theoretical expectations. Section S4 showcases the Monte Carlo simulation results for
the linearity test. The issue of weak instruments due to a highly persistent regressor
in a first-differenced estimator is addressed in Section S5. Here, we propose a system
GMM estimator to mitigate the weak instrument challenge. The simulation outcomes
suggest that the proposed smoothed system-GMM estimator outperforms the smoothed
FD-GMM estimator in handling the persistent regressor within the dynamic panel con-
text. Additional findings related to the democracy-growth application are presented in
Section S6. A heuristic example demonstrating the smoothness of the GMM estimator
for the threshold model within a fixed threshold effect framework is illustrated in Section
S7.
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S1. THE GMM ESTIMATOR FOR THE LINEAR INDEX THRESHOLD MODEL

This section considers the standard (non-smoothed) GMM estimator for model (2.1) in
the paper. We provide the estimation strategy and discuss the limiting results. Similar
to the smoothed GMM estimator, we also propose the a statistic for the test of linearity.

S1.1. Estimation

For the moment condition (2.2), the natural sample analogue to E(gt(θ)) is,

gn(θ) =
1

n

n∑
t=1

gt(θ). (1.0.1)

The GMM estimators can be obtained as

θ̂GMM = argmin
θ∈Θ

Qn(θ), (1.0.2)

where

Qn(θ) = gn(θ)TWngn(θ) =

[
1

n

n∑
t=1

gt(θ)

]T
Wn

[
1

n

n∑
t=1

gt(θ)

]
, (1.0.3)

and Wn is a positive definite matrix with Wn
p→ Ω−1, where Ω = E

(
gt(θn)gt(θn)T

)
.

As Qn(θ) is not continuous in ψ, it is more practical to use a grid search empirically
for low-dimensional q2t

1. Note that the model is linear in β and δ for a given ψ. Thus,
for a given ψ and a weight matrix Wn, we have

(
β̂T(ψ), δ̂

T
(ψ)

)T
=
[
Ĝ(ψ)TWnĜ(ψ)

]−1

Ĝ(ψ)TWn

[
− 1

n

∑
ztyt

]
, (1.0.4)

where Ĝ(ψ)
m×2k

=
[
ĜTβ , Ĝ

T
δ (ψ)

]T
, Ĝβ
m×k

= − 1
n

∑
ztx

T
t and Ĝδ(ψ)

m×k
= − 1

n

∑
ztx̃

T
t I
(
q1t + qT2tψ > 0

)
.

Then, the threshold index estimators can be obtained by

ψ̂GMM = argmin
ψ∈Θψ

Qn(ψ) =

[
1

n

n∑
t=1

gt(β̂(ψ), δ̂(ψ), ψ)

]T
Wn

[
1

n

n∑
t=1

gt(β̂(ψ), δ̂(ψ), ψ)

]
,

(1.0.5)
and (

β̂GMMT

, δ̂GMMT
)T

=
(
β̂T ˆ(ψ), δ̂T ˆ(ψ)

)T
. (1.0.6)

Therefore, the 2-step method can be obtained as:
Step 1: Estimate the model with Wn = Im, where Im is an m×m identity matrix, and

get residual ê.

Step 2: Estimate the model with Wn =
[

1
n

∑n
t=1(ztz

T
t ê

2
t )
]−1

.

S1.2. Asymptotic Results

Theorem 1.1. (a) Under Assumption 4.1 in the paper, as n→∞, we have

1For the high-dimensional q2t, we may consider to use the MIQ algorithm (e.g. Lee et al. (2021)).
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θ̂GMM p→ θn. (1.1.1)

(b) Under Assumption 4.1 in the paper, as n→∞, choosing a weighting matrix such that

Wn
p→W = Ω−1, we have√n 0 0

0
√
n 0

0 0 n
1
2−α

 β̂ − β0

δ̂ − δn
ψ̂ − ψ0

 d→ N
(

0,
(
GTΩ−1G

)−1
)
, (1.1.2)

where Ω and G are defined in Assumption 4.1 (d) and Assumption 4.1 (g).

Proof. Closely following the proof of Theorem 4.1, we conclude the proof of part (a).
For part (b), we follow Theorem 7.1 of Newey and Mcfadden (1994).

First, by the Central Limit Theorem (CLT) for strong mixing data, we have
√
ngn(θn)

d→
N(0, Ω) , where Ω = E(gt(θn)gt(θn)T ).

Next, let Wn
p→W = Ω−1, and

Dn = k−1
n GTWngn(θn),

H = k−1
n GTWGk−1

n ,

R(θ) =
Qn(θ)−Qn(θn)−Q(θ)−DT

n (θ − θn)

‖θ − θn‖
.

we next show the stochastic differentiability condition hold. That is, for any γn → 0,
we have

Sup
‖θ−θn‖≤γn

∣∣∣∣ √
nR(θ)

1 +
√
n ‖θ − θn‖

∣∣∣∣ = op(1).

Define εn(θ) = gn(θ)−gn(θn)−g(θ)
1+
√
n‖θ−θn‖

. For γn → 0 and U = {‖θ − θn‖ ≤ γn}, Sup{
θ∈U

√
n ‖εn(θ)‖} p→

op(1) if empirical process
√
n (gn(θ)− g(θ)) is stochastically equicontinuous. Note that

gt(θ) is linear in β and δ, which are bounded by Assumption 4.1 (d). Therefore, we only

need to check the stochastic equicontinuity of the empirical process 1√
n

∑n
t=1

[
ztx̃tI(q1t+

qT2tψ > 0)−E
{
ztx̃tI(q1t + qT2tψ > 0)

} ]
. Let F = (‖ztx̃t‖) sup

||ψ−ψ0||≤γn
I
(
q1t > −qT2tψ

∧
−qT2tψ0

)
be the envelope function, where

∧
denotes the minimum operator. Since the indicator

functions of half intervals constitute a type I class or a Vapnik– Chervonenkis (VC) class,
by Assumptions 4.1 (a)-(b) and (d), the stochastic equicontinuity follows the Theorem
1 of Andrews (1994) and the Theorem 2.14.1 of Vaart and Wellner (2000). Evidently,
εn(θn) = 0.

Following proof of Theorem 7.2 of Newey and Mcfadden (1994), we decompose |
√
nR(θ)

1+
√
n‖θ−θn‖

|
into five terms, ∣∣∣∣ √

nR(θ)

1 +
√
n ‖θ − θn‖

∣∣∣∣ ≤ 5∑
j=1

rnj(θ),
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where

rn1(θ) =

√
n
(

2
√
n ‖θ − θn‖+ ‖θ − θn‖2

) ∣∣εn(θ)TWnεn(θ)
∣∣

‖θ − θn‖ (1 +
√
n ‖θ − θn‖)

=
(2n+

√
n ‖θ − θn‖)

∣∣εn(θ)TWnεn(θ)
∣∣

(1 +
√
n ‖θ − θn‖)

,

rn2(θ) =

√
n
∣∣∣[g(θ)−Gk−1

n (θ − θn)
]T
Wngn(θn)

∣∣∣
‖θ − θn‖ (1 +

√
n ‖θ − θn‖)

,

rn3(θ) =
n
∣∣∣[g(θ) + gn(θn)]

T
Wnεn(θ)

∣∣∣
(1 +

√
n ‖θ − θn‖)

,

rn4(θ) =

√
n
∣∣g(θ)TWnεn(θ)

∣∣
‖θ − θn‖

,

rn5(θ) =

√
n
∣∣g(θ)T [Wn −W ] g(θ)

∣∣
‖θ − θn‖ (1 +

√
n ‖θ − θn‖)

.

By the consistency of θ and Sup{
θ∈U

√
n||εn, (θ)||}

p→ op(1), we have

Sup{
θ∈U

rn1(θ)} = Sup
θ∈U

 (2 + ‖θ−θn‖√
n

)
∣∣∣(√nεn(θ))

T
Wn
√
nεn(θ)

∣∣∣
(1 +

√
n ‖θ − θn‖)

 = op(1).

Note that, by the differentiability of g(θ), we can show

Sup
θ∈U

{
‖
√
ng(θ)‖

(1 +
√
n ‖θ − θn‖)

}
≤ Sup

θ∈U

{
‖g(θ)‖
‖θ − θn‖

}
≤ Sup

θ∈U

{∥∥g(θn) +Gk−1
n (θ − θn) + o(‖θ − θn‖)

∥∥
‖θ − θn‖

}
= O(1),

and

Sup
θ∈U

{ ∥∥g(θ)−Gk−1
n (θ − θn)

∥∥
‖θ − θn‖ (1 +

√
n ‖θ − θn‖)

}
≤ Sup

θ∈U

{∥∥g(θ)−Gk−1
n (θ − θn)

∥∥
‖θ − θn‖

}

= Sup
θ∈U

{∥∥g(θ)− g(θn)−Gk−1
n (θ − θn)

∥∥
‖θ − θn‖

}
= o(1).

Applying Cauchy-Schwarz inequality, we have

Sup{
θ∈U

rn2(θ)} = Sup
θ∈U


∣∣∣[g(θ)−Gk−1

n (θ − θn)
]T
Wn
√
ngn(θn)

∣∣∣
‖θ − θn‖ (1 +

√
n ‖θ − θn‖)

 = op(1),

Sup{
θ∈U

rn3(θ)} ≤ Sup
θ∈U

{√
n ‖g(θ) + gn(θn)‖ ‖Wn‖ ‖

√
nεn(θ)‖

(1 +
√
n ‖θ − θn‖)

}
= op(1),
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and

Sup{
θ∈U

rn4(θ)} = Sup
θ∈U

{√
n
∥∥g(θ)TWnεn(θ)

∥∥
‖θ − θn‖

}
≤ Sup

θ∈U

{
‖g(θ)‖
‖θ − θn‖

‖Wn‖
√
n ‖εn(θ)‖

}
= op(1).

Sup{
θ∈U

rn5(θ)} = Sup
θ∈U

{√
n
∣∣g(θ)T [Wn −W ] g(θ)

∣∣
‖θ − θn‖ (1 +

√
n ‖θ − θn‖

}
≤ Sup

θ∈U

{
‖g(θ)‖
‖θ − θn‖

‖Wn −W‖
‖g(θ)‖
‖θ − θn‖

}
= op(1).

To sum up, we obtain

Sup
θ∈U

{∣∣∣∣ √
nR(θ)

1 +
√
n ‖θ − θn‖

∣∣∣∣} ≤ 5∑
j=1

Sup{
θ∈U

rnj(θ)} ≤
5∑
j=1

op(1) = op(1).

Next, by replacing (θ̂ − θn) with k−1
n (θ̂ − θn) and applying the same arguments as

in the proof of Theorem 7.1 of Newey and Mcfadden (1994), we have k−1
n (θ̂ − θn) =

Op(n
−1/2). Similarly, let θ̃ = θn −

[
k−1
n GTWGk−1

n

]−1 (
k−1
n GTWn

)
gn(θn). Closely fol-

lowing the same lines proof of Theorem 7.1 of Newey and Mcfadden (1994), we can show∥∥∥k−1
n (θ̂ − θn)− k−1

n (θ̃ − θn)
∥∥∥ = op(n

−1/2). Hence,
√
nk−1

n

∥∥∥θ̂ − θ̃∥∥∥ p→ 0. By following
√
nk−1

n

(
θ̃ − θn

)
d→ N

(
0,
(
GTΩ−1

)−1
)

, we have
√
nk−1

n

(
θ̂ − θn

)
d→ N

(
0,
(
GTΩ−1G

)−1
)

.

Q.E.D.

The convergence rate for the estimator of the slope parameter is standard root-n. The
convergence rate for the thresholds depends on the unknown α, which determines the
decaying rate of the threshold effect. Intuitively, unlike the smoothed least square of
Seo and Linton (2007), where the smoothness results from the objective funtion, the
smoothness of the GMM estimator relies on the nature of the sample averaging 2.
Gβ and Gδ can be estimated as

Ĝβ = − 1

n

n∑
t=1

ztx
T
t ,

Ĝδ = − 1

n

n∑
t=1

ztx̃
T
t I
(
q1t + qT2tψ̂ > 0

)
.

For Gψ, we can estimate it using a standard Nadaraya-Watson kernel estimator,

Ĝψ = − 1

nb

n∑
t=1

ztδ̂
T x̃tq

T
2tφ

(
q1t + qT2tψ̂

b

)
,

where φ(.) is the second-order kernel function and b is the bandwidth.

Let Ω̂ = 1
n

∑n
t=1 gt(θ̂)g

T
t (θ̂). As n→∞, Ĝ and Ω̂ converge in probability respectively

to G and Ω following the uniform law of large number, the consistency of the Nadaraya-
Watson estimator and the kernel density estimator for α mixing data.

2We provide a heuristic example in section S7 to explain the smoothness of the GMM and compare
the limiting behaviours among the least square estimator, the smoothed least square estimator, and the
GMM estimator.
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S1.3. Test for Linearity

Similar to section 5 in the paper, we consider the null hypothesis of δ = 0. Let

SupWald = sup
ψ∈Θψ

Wald(ψ), (1.1.3)

where β̂(ψ) and δ̂(ψ) are the the GMM estimates of β and δ, repectively,

Wald(ψ) = n

(
R
[
β̂T (ψ), δ̂T (ψ)

]T)T [
R(Ĝ(ψ)T Ω̃−1Ĝ(ψ))−1RT

]−1

R
[
β̂T (ψ), δ̂T (ψ)

]T
,

Ĝ(ψ) =
[
Ĝβ , Ĝδ(ψ)

]
,

R = [0l×k, Il×l] ,

and Ω̃ is the estimate of Ω under the null of linearity.

Theorem 1.2. Suppose that inf
ψ∈Θψ

|G(ψ)TΩ−1G(ψ)| is positive, with Assumptions 4.1(a)-

(d), and 4.1(f) hold in the paper, under the null hypothesis, we have

SupWald
d−→ sup

ψ∈Θψ

V TΩ−1/2G(ψ)T
(
G(ψ)TΩ−1G(ψ)

)−1
RT
(
R
(
G(ψ)TΩ−1G(ψ)

)−1
)
RT )−1

× R
(
G(ψ)TΩ−1G(ψ)

)−1
G(ψ)Ω−1/2V, (1.2.1)

where V ∼ N(0, Il) and Il is an l by l identity matrix.

Similar to the smoothed GMM estimator discuss in the paper, the p-values can be
simulated following the same bootstrap.

Proof. Under the null of δ0 = 0, we have

δ̂s(ψ) = R

(
Ĝs(ψ)T Ω̃(ψ)−1Ĝs(ψ)

)−1

Ĝs(ψ)T Ω̃(ψ)−1gsn(θn). (1.2.2)

By applying Lemma 3, we can show sup
ψ∈Θψ

‖Ĝsδ(ψ) − Gδ(ψ)‖ = op(1). Thus, applying

continuous mapping theorem, for each ψ ∈ Θψ, we have

√
nδ̂s(ψ) =⇒ R

(
G(ψ)TΩ−1G(ψ)

)−1
G(ψ)TΩ−1/2V, (1.2.3)

where R and V are defined in (1.2) and concludes our proof.
Q.E.D.

S2. LEMMAS

Lemma 2.1. Under Assumption 4.1, we have

Sup
ψ∈Θψ

∥∥∥∥∥ 1

n

n∑
t=1

ztx̃t
T I(q1t + qT2tψ > 0)− E[ztx̃t

T I(q1t + qT2tψ > 0)]

∥∥∥∥∥ p→ 0.

Sup
ψ∈Θψ

∥∥∥∥∥ 1

n

n∑
t=1

xtx̃t
T I(q1t + qT2tψ > 0)− E[xtx̃t

T I(q1t + qT2tψ > 0)]

∥∥∥∥∥ p→ 0.
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Proof. Under Assumptions 4.1, E||ztx̃Tt || and E||xtx̃Tt || are bounded. Then, the proof
is straightforward by applying Lemma 1 of Seo and Linton (2007).

Q.E.D.

Lemma 2.2. Under Assumptions 4.1 (a)-(b) and (f), there is a C < ∞ such that for
any ψ1, ψ2 ∈ Θψ, we have

‖E (Xt (I(ψ1)− I(ψ2)))‖ ≤ C ‖ψ1 − ψ2‖ ,
‖E (Xtεt (I(ψ1)− I(ψ2)))‖ ≤ C ‖ψ1 − ψ2‖ ,

where I(ψ) = I
(
q1t + qT2tψ > 0

)
.

Proof. Note that, for any random variable w, we have

∂E
(
wI(q1t + qT2tψ > 0)

)
∂ψi

= E (wq2it |vt(ψ) = 0) fvt(ψ)(0),

where vt defines in Assumption 4.1 (g).
Thus, applying the first-order Taylor approximation, we have,

‖E (Xt (I(ψ1)− I(ψ2)))‖ ≤
∥∥E(Xtq

T
2t|vt(ψ2) = 0)

∥∥ fvt(ψ2)(0) ‖ψ1 − ψ2‖+O(1)

‖E (Xtεt (I(ψ1)− I(ψ2)))‖ ≤
∥∥E( Xtεtq

T
2t|vt(ψ2) = 0)

∥∥ fvt(ψ2)(0) ‖ψ1 − ψ2‖+O(1).

Applying Assumptions 4.1 (b) and (f), we can show that there exists a C such that
‖E(Xtq2t|vt(ψ2) = 0)‖fvt(ψ2)(0) < C < ∞ and ‖E( Xtεtq

T
2t|vt(ψ2) = 0)‖fvt(ψ2)(0) <

C <∞. This completes the proof of the Lemma.
Q.E.D.

Lemma 2.3. Under Assumptions 4.1-4.2, we have

sup
θ∈Θ
‖gsn(θ)− gn(θ)‖ p→ 0, (2.0.1)

and hence,

sup
θ∈Θ
‖gsn(θ)− E (gt(θ))‖

p→ 0. (2.0.2)

Proof. Note that, by Hölder’s inequality, we can prove (2.0.1) by showing

sup
θ∈Θ
‖gsn(θ)− gn(θ)‖ = sup

θ∈Θ

∥∥∥∥∥ 1

n

n∑
t=1

ztδ
T x̃t

(
K(

q1t + qT2t
hn

)− I
(
q1t + qT2tψ > 0

))∥∥∥∥∥
≤

(
sup
θ∈Θ
− 1

n

n∑
t=1

∥∥ztδT x̃t∥∥a)1/a(
sup
θ∈Θ

1

n

n∑
t=1

|K(
q1t + qT2tψ

hn
)− I

(
q1t + qT2tψ > 0

)
|b
)1/b

,

where the first term is bounded by Assumptions 4.1 (a) and (b), and the second term
to zero almost surely by Lemma 4 of Horowitz (1992), provided that, for any η > 0,
1
n

∑n
t=1 I

(
|q1t + qT2tψ| < η

)
converges to Pr

(
|q1t + qT2tψ| < η

)
, almost surely uniformly

over ψ ∈ Θψ, which follows Lemma 2.1 since

I
(
|q1t + qT2tψ| < η

)
= I

(
q1t + qT2tψ < η

)
− I

(
q1t + qT2tψ ≤ −η

)
.
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Then, under Assumptions 4.1-4.2 and applying Lemma 1 we concludes the proof of
(2.0.2).

Q.E.D.

Lemma 2.4. Under Assumption 6.1, we have

sup
θ∈Θ

∥∥gsfdn (θ)− gfdn (θ)
∥∥ p→ 0,

where gfdn (θ) = 1
n

∑n
i=1 g

fd
i (θ).

Proof. For t = t0, . . . , T , by triangular inequality, we have

sup
θ∈Θ

∥∥gsfdn (θ)− gfdn (θ)
∥∥ ≤ sup

θ∈Θ

∥∥∥∥∥∥∥∥∥∥


1
n

∑n
i=1 zit0δ

T x̃it0

(
I(qi,1t0 + qTi,2t0ψ > 0)−K(

qi,1t0+qTi,2t0
ψ

hn
)

)
· · ·

1
n

∑n
i=1 ziT δ

T x̃iT

(
I(qi,1T + qTi,2Tψ > 0)−K(

qi,1T+qTi,2Tψ

hn
)

)

∥∥∥∥∥∥∥∥∥∥

+ sup
θ∈Θ

∥∥∥∥∥∥∥∥∥∥


1
n

∑n
i=1 zit0δ

T x̃it0−1

(
I(qi,1t0−1 + qTi,2t0−1ψ > 0)−K(

qi,1t0−1+qTi,2t0−1ψ

hn
)

)
· · ·

1
n

∑n
i=1 ziT δ

T x̃iT−1

(
I(qi,1T−1 + qTi,2T−1ψ > 0)−K(

qi,1T−1+qTi,2T−1ψ

hn
)

)

∥∥∥∥∥∥∥∥∥∥
.

Then, by applying Hölder’s inequality and following the proof of Lemma 2.33, we conclude
the proof.

Q.E.D.

S3. MONTE CARLO SIMULATION

In this section, we investigate the finite sample performance of the smoothed GMM
estimator. We use the following structure to carry out the simulations:

yt = I(q1t + q2t ≤ 0) + et, (3.0.1)

et = 0.1εt + k1vq1t + k2vq2t ,

q1t = 0.5q1t−1 + vq1t ,

q2t = 0.5q2t−1 + vq2t ,

where vq1t , vq2t and εt are independently normally distributed with mean zero and vari-
ance one.

We let q1t and q2t follow an AR(1) process, I(.) is the indication function and ψ0 = 1.
The degree of endogeneity of the threshold variable is controlled by k1 and k2. We use
q1t−1 and q2t−1 as the instrument for q1t and q2t respectively.

Clearly, this data generation process (DGP) is a simpler version of the general model,
yt = xTt β+δT x̃tI(q1t+q

T
2tψ > 0)+et, with β = 0, δ = 1 and xt = x̃t = 1 for all t = 1, 2, ...

We estimate the model with the smoothed least squares (LS) method of Seo and Linton
(2007) and the smoothed GMM estimator. For both the smoothed LS and the smoothed
GMM, we use the same kernel function and the bandwidth choice with the simulations

3The proof here is easier than Lemma 2.3 since we can directly apply Lemma 4 of Horowitz (1992) by
Assumption 6.1 (a).
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reported in Seo and Linton (2007). We use 2000 replications with sample sizes n = 100,
300 and 500 respectively. To investigate the endogeneity in threshold variable, we vary
k1 and k2 with values 0, 0.3 & 0.5. All simulations are executed in Matlab.

S3.1. Bias, MSE, and Standard Deviation

For each simulation, we report the MSE, average Bias, and the standard deviation of
the threshold estimates. Tables A1 - A9 report the simulation results. Specifically, Ta-
ble 1 reports results with both exogenous q1 and q2. Tables 2 reports the results with
endogenous q1 and q2.

Note that the DGP is designed with a fixed threshold effect. Hence, the smoothed
GMM estimator converges at the normal root-n rate, whereas the convergence rate of
the smoothed LS estimator is

√
n
h . In Table A1, for the linear threshold estimate ψ, we

observe the smoothed LS estimator does converge at a faster rate than the smoothed
GMM estimator, which confirms the super-consistency of the smoothed LS estimator.

Table A9 reports the results with both endogenous q1 and q2, where k1 = k2 = 0.5. We
observe a large bias in the smoothed LS estimator, and the bias cannot shrink as sample
size increases. This is consistent with our expectation since the smoothed LS estimator
has an asymptotic bias with endogenous threshold variables. In contrast, all MSEs of
our proposed smoothed GMM estimator decreases to zero as the sample size increase,
confirming the consistency.

S3.2. Coverage Probability

We also explore the coverage probability with the data generation process (3.0.1). Fol-
lowing Seo and Shin (2016), we choose the bandwidth by the Silverman’s rule of thumb
multiplied by h, and report the results for h = (0.5, 1, 1.5). Table A3 reports the empirical
coverage probabilities of the 95% confidence intervals for the smoothed GMM estima-
tor with both exogenous q1 and q2, exogenous q2 and endogenous q1, exogenous q1 and
endogenous q2 respectively. As n increases, we observe the coverage steadily improves
for both exogenous and endogenous cases. We also observe the coverage increases as h
increases. Interestingly, unlike the bias and MSE, the coverage for ψ seems to be better
than those of β and δ, especially for the case when q1 is endogenous.

S3.3. More Monte Carlo Results

This subsection provides additional simulation results of the above DGP. Table A4 and
A6 show the results of small and large endogenous q1 only. Table A5 and A7 show the
results of small and large endogenous q2 only. The rest of the tables present results of
both endogenous q1 and q2 with varying degrees.
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Table A1. Finite Sample Performance of the Smoothed Least Squares Estimator and the
Smoothed GMM Estimator. k1=k2=0 (Exogenous Case)

MSE
Smoothed LS Smoothed GMM

n ψ β δ ψ β δ
100 0.0065 0.0009 0.0021 0.0413 0.0017 0.0055
300 0.0014 0.0002 0.0005 0.0120 0.0004 0.0015
500 0.0007 0.0001 0.0003 0.0058 0.0003 0.0008

Bias
Smoothed LS Smoothed GMM

n ψ β δ ψ β δ
100 0.0052 0.0128 -0.0251 0.0102 0.0032 -0.0063
300 0.0010 0.0061 -0.0119 0.0044 0.0013 -0.0020
500 0.0006 0.0035 -0.0071 0.0030 0.0002 -0.0004

Standard Error
Smoothed LS Smoothed GMM

n ψ β δ ψ β δ
100 0.0802 0.0268 0.0379 0.2030 0.0406 0.0739
300 0.0375 0.0136 0.0195 0.1096 0.0207 0.0383
500 0.0259 0.0101 0.0142 0.0764 0.0159 0.0289

Note: This table reports the simulation results of the smoothed LS estimator and the smoothed GMM
estimator for the DGP defined by equation (3.0.1) with exogenous q1t and q2t. The first column shows
the sample size. The second to the fourth columns report the results of the smoothed LS estimator for ψ,
β & δ respectively. The fifth to the seventh columns present the results of the smoothed GMM estimator.

S4. FINITE SAMPLE PERFORMANCE OF THE TEST FOR LINEARITY

To assess the finite sample performance of the linearity test, we use a simple model,

yt = bI(q1t + q2t ≤ 0) + εt,

q1t = 0.5q1t−1 + vq1t,

q2t = 0.5q2t−1 + vq2t,

where vq1t, vq2t and εt are independently normally distributed with mean zero and vari-
ance one.

The simulations are done for five sample sizes, n = 50, n = 100, n = 200, n = 300,
n = 500, and five threshold effects, b = 0, b = 0.2, b = 0.5, b = 0.8, b = 1. We report the
results in Table S4 and S4. The replication number is 2000. Throughout the analysis, we
use a significance level of 5%. As expected, for both testings, size is approaching to 5%
as sample size increases. Power is increasing in b, and increasing in n.
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Table A2. Finite Sample Performance of the Smoothed Least Square Estimator, the GMM
Estimator, and the Smoothed GMM Estimator. k1=0.5, k2 = 0.5 (Endogenous q1 and
q2)

MSE
Smoothed LS Smoothed GMM

n ψ β δ ψ β δ
100 2.3009 0.3519 1.4086 0.6175 0.0560 0.2080
300 1.8697 0.3469 1.3855 0.2094 0.0135 0.0445
500 1.5386 0.3500 1.4012 0.1353 0.0082 0.0275

Bias
Smoothed LS Smoothed GMM

n ψ β δ ψ β
δ
100 -1.0058 0.5833 -1.1698 -0.0585 0.0592 -0.1167
300 -1.0648 0.5847 -1.1693 0.0554 0.0093 -0.0203
500 -1.0177 0.5890 -1.1789 0.0474 0.0011 -0.0041

Standard Error
Smoothed LS Smoothed GMM

n ψ β δ ψ β δ
100 1.1357 0.1079 0.2008 0.7838 0.2291 0.4410
300 0.8581 0.0710 0.1353 0.4543 0.1160 0.2100
500 0.7093 0.0558 0.1070 0.3649 0.0903 0.1659

Note: This table reports the simulation results of the smoothed LS estimator and the smoothed GMM
estimator for the DGP defined by equation (3.0.1) with endogenous q1t and q2t. The first column shows
the sample size. The second to the fourth columns report the results of the smoothed LS estimator for ψ,
β & δ respectively. The fifth to the seventh columns present the results of the smoothed GMM estimator.

S5. SYSTEM GMM IN THE THRESHOLD MODEL

It is well-documented that, in many empirical problems, for example, the democracy-
growth nexus as we discuss more in Section 7 of the main paper, we need to tackle
the weak instrument problem in the presence of a highly persistent regressor of a FD
estimator. In this section, following Blundell and Bond (1998), we propose to use a system
GMM to alleviate the weak instrument issue.

S5.1. The Problem of Weak Instruments and A System GMM Estimator

The most natural moment conditions for dynamic panels is proposed by Arellano and
Bond (1991) and can be expressed as E(yit−s∆εit) = 0, for t = 3, ..., T and s ≥ 2. Thus,
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Table A3. Coverage Frequency of the Smoothed GMM Estimator

k1=k2=0 (Exogenous Case)
h = 0.5 h = 1 h = 1.5

n ψ β δ ψ β δ ψ β δ
100 0.817 0.797 0.771 0.829 0.797 0.771 0.835 0.797 0.771
300 0.875 0.807 0.774 0.904 0.807 0.774 0.901 0.807 0.774
500 0.875 0.820 0.797 0.903 0.820 0.797 0.906 0.820 0.797

k1=0.5, k2=0 (Endogenous q1)
h = 0.5 h = 1 h = 1.5

n ψ β δ ψ β δ ψ β δ
100 0.853 0.775 0.741 0.936 0.775 0.741 0.963 0.775 0.741
300 0.850 0.865 0.854 0.919 0.865 0.854 0.944 0.865 0.854
500 0.889 0.892 0.887 0.932 0.892 0.887 0.941 0.892 0.887

k1=0, k2=0.5 (Endogenous q2)
h = 0.5 h = 1 h = 1.5

n ψ β δ ψ β δ ψ β δ
100 0.621 0.794 0.761 0.677 0.794 0.761 0.710 0.794 0.761
300 0.813 0.858 0.845 0.851 0.858 0.845 0.866 0.858 0.845
500 0.830 0.886 0.890 0.878 0.886 0.890 0.885 0.886 0.890

Note: This table reports the coverage probability results of the smoothed GMM estimator for the DGP
defined by equation (3.0.1) with both exogenous and endogenous threshold variables, q1t, q2t. The first
column shows the sample size. The second to the fourth columns report the results with the h = 0.5.
The fifth to the seventh columns present the results with the h = 1. The last three columns report the
results with h = 1.5.

we can use following instrument matrix,

ZABi =


yi1 0 0 . . . 0 . . . 0
0 yi1 yi2 . . . 0 . . . 0
. . . . . . . . . . .
0 0 0 . . . yi1 . . . yiT−2

 , (5.0.1)

to construct the sample moments (6.12) in the main paper.
However, as underscored in Blundell and Bond (1998), for a dynamic panel model

with endogeneity, the instrument set (5.0.1) becomes less informative as the coefficient
of yit−1 increases toward unity. Similarly, for the dynamic panels with threshold effect
and endogeneity, we may expect the weak instrument problem also occurs when β + δ
increases toward unity. To elaborate this point, we consider a heuristic model with T = 3,
and xit = x̃it = yit−1 for all i = 1, .., N and t = 1, ..., T . Therefore, model (6.10) of the
main paper becomes

yi2 = β1yi1 + δyi1I(qi,12 + q>i,22ψ > 0) + ηi + εi2, (5.0.2)

for t = 2.
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Table A4. Finite Sample Performance of the Smoothed Least Square Estimator, the GMM
Estimator, and the Smoothed GMM Estimator. k1=0.3, k2 = 0 (Endogenous q1)

MSE
Smoothed LS GMM Smoothed GMM

n ψ β δ ψ β δ ψ β δ
100 0.1709 0.0274 0.1073 0.1286 0.0100 0.0323 0.1796 0.0107 0.0351
300 0.0488 0.0237 0.0939 0.0510 0.0030 0.0100 0.0510 0.0030 0.0100
500 0.0306 0.0228 0.0903 0.0294 0.0017 0.0058 0.0270 0.0017 0.0057

Bias
Smoothed LS GMM Smoothed GMM

n ψ β δ ψ β δ ψ β δ
100 0.3563 0.1603 -0.3213 0.0488 0.0091 -0.0180 0.1149 0.0217 -0.0430
300 0.2086 0.1522 -0.3045 0.0275 0.0045 -0.0095 0.0395 0.0074 -0.0150
500 0.1684 0.1499 -0.2994 0.0175 0.0010 -0.0021 0.0215 0.0027 -0.0060

Standard Error
Smoothed LS GMM Smoothed GMM

n ψ β δ ψ β δ ψ β δ
100 0.2096 0.0412 0.0638 0.3554 0.0997 0.1789 0.4080 0.1009 0.1823
300 0.0728 0.0228 0.0351 0.2241 0.0542 0.0995 0.2224 0.0540 0.0990
500 0.0476 0.0173 0.0261 0.1705 0.0416 0.0760 0.1631 0.0412 0.0750

Note: This table reports the simulation results of the smoothed LS estimator, the GMM estimator, and
the smoothed GMM estimator for the DGP defined in Section S3 with endogenous q1t and exogenous
q2t. The first column shows the sample size. The second to the fourth columns report the results of the
smoothed LS estimator for ψ, β & δ respectively. The fifth to the seventh columns present the results of
the GMM estimator. The last three columns show the results of the smoothed GMM estimator.

By deducting both sides by yi1, we have

∆yi2 =

{
(β1 − 1)yi1 + ηi + εi2, qi,12 + q>i,22ψ ≤ 0,

(β1 − 1 + δ)yi1 + ηi + εi2, qi,12 + q>i,22ψ > 0.
(5.0.3)

As β1 approaches to unity, yi1 can be less informative to work as an instrument for
∆yi2 in the low regime. Similarly, as β1 + δ approaches to unity, yi1 is less informative
in the high regime.

To deal with above weak instrument problem, following Blundell and Bond (1998),
we exploit the additional moment condition, E(∆yit−1uit), where uit = ηi + εit, and
construct a instrument system that can be expressed as

Zsysi =


ZABi 0 0 . . . 0

0 ∆yi2 0 . . . 0
0 0 ∆yi3 . . . 0
. . . . . . .
0 0 0 . . . ∆yiT−1

 , (5.0.4)
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Table A5. Finite Sample Performance of the Smoothed Least Square Estimator, the GMM
Estimator, and the Smoothed GMM Estimator. k1=0, k2 = 0.3 (Endogenous q2)

MSE
Smoothed LS GMM Smoothed GMM

n ψ β δ ψ β δ ψ β δ
100 0.0738 0.0277 0.1068 0.1172 0.0093 0.0321 0.1299 0.0090 0.0315
300 0.0311 0.0233 0.0931 0.0523 0.0029 0.0095 0.0528 0.0029 0.0096
500 0.0213 0.0226 0.0902 0.0333 0.0017 0.0055 0.0317 0.0017 0.0055

Bias
Smoothed LS GMM Smoothed GMM

n ψ β δ ψ β δ ψ β δ
100 -0.2471 0.1615 -0.3206 -0.0900 0.0110 -0.0209 -0.0414 0.0236 -0.0453
300 -0.1695 0.1510 -0.3030 -0.0050 0.0009 -0.0025 0.0087 0.0038 -0.0083
500 -0.1415 0.1494 -0.2991 0.0080 -0.0003 0.0005 0.0120 0.0013 -0.0031

Standard Error
Smoothed LS GMM Smoothed GMM

n ψ β δ ψ β δ ψ β δ
100 0.1127 0.0406 0.0631 0.3304 0.0960 0.1779 0.3581 0.0921 0.1718
300 0.0482 0.0226 0.0351 0.2287 0.0540 0.0976 0.2297 0.0541 0.0979
500 0.0349 0.0179 0.0277 0.1824 0.0412 0.0743 0.1777 0.0412 0.0742

Note: This table reports the simulation results of the smoothed LS estimator, the GMM estimator, and
the smoothed GMM estimator for the DGP defined in Section S3 with endogenous q2 and exogenous
q1. The first column shows the sample size. The second to the fourth columns report the results of the
smoothed LS estimator for ψ, β & δ respectively. The fifth to the seventh columns present the results of
the GMM estimator. The last three columns show the results of the smoothed GMM estimator.

where ZABi is defined in (5.0.1).

Using (5.0.4) to estimate model (6.10) in the main paper essentially extends the system
GMM method to a nonlinear setting. Below, we carry out a small simulation and show the
proposed smoothed system GMM estimator has a much better finite sample performance
than the smoothed FD-GMM estimator in the presence of a persistent regressor in the
dynamic panel context. To this end, we recommend using the system GMM if there is a
persistent regressor.

S5.2. Monte Carlo study: System GMM in the Threshold Model

This subsection reports a Monte Carlo study that investigates the finite sample perfor-
mance of the system GMM in the presence of a highly persistent regressor.
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Table A6. Finite Sample Performance of the Smoothed Least Squares Estimator and the
Smoothed GMM Estimator. k1=0.5, k2 = 0 (Endogenous q1)

MSE
Smoothed LS Smoothed GMM

n ψ β δ ψ β δ
100 4.8371 0.4161 1.6623 0.3494 0.0252 0.0886
300 4.7505 0.3772 1.5041 0.1246 0.0069 0.0234
500 4.6371 0.3678 1.4688 0.0732 0.0040 0.0135

Bias
Smoothed LS Smoothed GMM

n ψ β δ ψ β δ
100 -1.4103 0.5804 -1.1642 0.1536 0.0225 -0.0501
300 -1.3636 0.5504 -1.1002 0.0845 0.0063 -0.0134
500 -1.3951 0.5432 -1.0857 0.0443 0.0021 -0.0034

Standard Error
Smoothed LS Smoothed GMM

n ψ β δ ψ β δ
100 1.6881 0.2815 0.5541 0.5710 0.1573 0.2934
300 1.7008 0.2726 0.5422 0.3428 0.0830 0.1524
500 1.6408 0.2698 0.5387 0.2670 0.0631 0.1163

Note: This table reports the simulation results of the smoothed LS estimator, the GMM estimator, and
the smoothed GMM estimator for the DGP defined in Section S3 with endogenous q1t and exogenous
q2t. The first column shows the sample size. The second to the fourth columns report the results of the
smoothed LS estimator for ψ, β & δ respectively. The fifth to the seventh columns present the results of
the smoothed GMM estimator.

S5.3. Design

We consider the following data generation processes (DGP),

yit = βyit−1 + δyit−1I(q1,it + ψ1 + ψ2q2,it ≤ 0) + 0.2ηi + vit, (5.0.5)

for i = 1, .., N and t = 1, ..., T , where in each case q1,it, q2,it,, ηi, αt, and vit are drawn
as mutually independent i.i.d. N(0,1) random variable.

Model (5.0.5) extends the DGP in Blundell and Bond (1998) to a dynamic panel model
with a threshold effect. To investigate the sensitivity of the relevance of the instrument
to the persistence, we vary β with values (0.5, 0.95) and δ with values (−0.1,−0.5). We
use 599 replications with N ∈ (100, 200) respectively. We fix T = 10.

Table A12-A13 report simulation results of estimations with a linear and a nonlinear
DGP, respectively. We examine the mean and root mean square error (RMSE) for each
estimator. First, from Table A12, we confirm the results of Blundell and Bond (1998)
that system GMM performs better by overcoming the weak instrument problem in the



S16 C. Chen et al.

Table A7. Finite Sample Performance of the Smoothed Least Squares Estimator and the
Smoothed GMM Estimator. k1=0, k2=0.5 (Endogenous q2)

MSE
Smoothed LS Smoothed GMM

n ψ β δ ψ β δ
100 1.7200 0.0501 0.1895 0.3200 0.0286 0.1023
300 1.4364 0.0510 0.2006 0.1177 0.0072 0.0236
500 1.3417 0.0525 0.2076 0.0771 0.0041 0.0138

Bias
Smoothed LS Smoothed GMM

n ψ β δ ψ β δ
100 -1.2012 0.2153 -0.4263 -0.0821 0.0362 -0.0738
300 -1.0790 0.2234 -0.4453 0.0233 0.0048 -0.0115
500 -1.0193 0.2277 -0.4541 0.0202 0.0029 -0.0084

Standard Error
Smoothed LS Smoothed GMM

n ψ β δ ψ β δ
100 0.5266 0.0612 0.0879 0.5598 0.1652 0.3114
300 0.5218 0.0334 0.0479 0.3424 0.0845 0.1533
500 0.5504 0.0265 0.0380 0.2770 0.0643 0.1172

Note: This table reports the simulation results of the smoothed LS estimator, the GMM estimator, and
the smoothed GMM estimator for the DGP defined in Section S3 with endogenous q2t and exogenous
q1t. The first column shows the sample size. The second to the fourth columns report the results of the
smoothed LS estimator for ψ, β & δ respectively. The fifth to the seventh columns present the results of
the smoothed GMM estimator.

linear dynamic panel setup. Next, under the true model is a nonlinear model (δ 6= 0),
from Table A13, we uniformly observe FD-GMM has a much higher RMSE for β when
the true β = 0.95 than the one when true β = 0.5. We find the system GMM significantly
reduces the RMSE β regardless of the value of true β. Our results show that the system
GMM has a good finite sample performance. Overall, our simulation results support the
advantage of the system instrument in the linear model as addressed in Blundell and
Bond (1998) can be also extended to the nonlinear model.

S6. ADDITIONAL RESULTS FOR THE DEMOCRACY-GROWTH NEXUS

S6.1. Linear Model with Interaction Term

As hinted in the paper, we posit the existence of a nonlinear impact of democracy on
economic growth. To explore this hypothesis, an intuitive approach is to examine the
interactions between democracy and the level of institutional quality. However, it is im-
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Table A8. Finite Sample Performance of the Smoothed Least Square Estimator, the GMM
Estimator, and the Smoothed GMM Estimator. k1=0.3, k2 = 0.5 (Endogenous q1 and
q2)

MSE
Smoothed LS GMM Smoothed GMM

n ψ β δ ψ β δ ψ β δ
100 6.0640 0.1407 0.5587 0.3878 0.0438 0.1528 0.4800 0.0442 0.1569
300 6.5514 0.1437 0.5707 0.1396 0.0090 0.0304 0.1546 0.0089 0.0303
500 6.7359 0.1440 0.5737 0.1001 0.0057 0.0193 0.1011 0.0056 0.0192

Bias
Smoothed LS GMM Smoothed GMM

n ψ β δ ψ β δ ψ β δ
100 -2.2108 0.3708 -0.7425 -0.1267 0.0411 -0.0808 -0.0476 0.0632 -0.1259
300 -2.3208 0.3779 -0.7541 0.0101 0.0059 -0.0133 0.0365 0.0119 -0.0249
500 -2.3576 0.3788 -0.7567 0.0328 0.0027 -0.0062 0.0434 0.0063 -0.0134

Standard Error
Smoothed LS GMM Smoothed GMM

n ψ β δ ψ β δ ψ β δ
100 1.0848 0.0567 0.0857 0.6099 0.2052 0.3825 0.6914 0.2006 0.3756
300 1.0798 0.0302 0.0442 0.3736 0.0948 0.1738 0.3916 0.0938 0.1722
500 1.0854 0.0233 0.0337 0.3148 0.0752 0.1387 0.3151 0.0749 0.1380

Note: This table reports the simulation results of the smoothed LS estimator, the GMM estimator, and
the smoothed GMM estimator for the DGP defined in Section S3 with endogenous q1 and q2. The first
column shows the sample size. The second to the fourth columns report the results of the smoothed LS
estimator for ψ, β & δ respectively. The fifth to the seventh columns present the results of the GMM
estimator. The last three columns show the results of the smoothed GMM estimator.

portant to note that, compared to the threshold approach, the interaction term overlooks
the potential heterogeneous impact of other variables, including democracy itself.

With this in mind, this subsection aims to present the estimates of the linear model
with interaction terms. Table A14 provides the results from this analysis. We observe
that the interaction term is significantly positive for the FD-GMM estimation, implying
that the impact of democracy does indeed depend on the level of current institutional
quality. However, this significant impact diminishes when we employ the system-GMM
approach to estimate the model. This intriguing contradiction motivates us to utilize a
threshold approach to further investigate the potential nonlinearity between democracy
and growth.

S6.2. Full Results of Estimates Using Alternative Dichotomous Measures of Democracy

Table 3 in the main paper presents the linear FD-GMM and threshold smoothed-FD-
GMM estimates of the impact of democracy on GDP per capita, using various alternative



S18 C. Chen et al.

Table A9. Finite Sample Performance of the Smoothed Least Square Estimator, the GMM
Estimator, and the Smoothed GMM Estimator. k1=0.5, k2 = 0.3 (Endogenous q1 and
q2)

MSE
Smoothed LS GMM Smoothed GMM

n ψ β δ ψ β δ ψ β δ
100 1.9676 0.3735 1.4915 0.3040 0.0326 0.1087 0.3947 0.0335 0.1130
300 1.8073 0.3575 1.4297 0.1375 0.0097 0.0334 0.1477 0.0095 0.0324
500 1.7583 0.3584 1.4332 0.1027 0.0057 0.0198 0.1004 0.0057 0.0197

Bias
Smoothed LS GMM Smoothed GMM

n ψ β δ ψ β δ ψ β δ
100 -1.2314 0.6023 -1.2058 -0.0370 0.0256 -0.0498 0.0466 0.0484 -0.0967
300 -1.1964 0.5906 -1.1817 0.0482 0.0026 -0.0032 0.0647 0.0099 -0.0178
500 -1.2072 0.5924 -1.1852 0.0419 0.0000 -0.0004 0.0452 0.0030 -0.0068

Standard Error
Smoothed LS GMM Smoothed GMM

n ψ β δ ψ β δ ψ β δ
100 0.6720 0.1039 0.1939 0.5503 0.1788 0.3259 0.6267 0.1765 0.3221
300 0.6133 0.0934 0.1822 0.3677 0.0987 0.1828 0.3789 0.0969 0.1792
500 0.5488 0.0864 0.1692 0.3177 0.0756 0.1408 0.3136 0.0755 0.1404

Note: This table reports the simulation results of the smoothed LS estimator, the GMM estimator, and
the smoothed GMM estimator for the DGP defined in Section S3 with endogenous q1 and q2. The first
column shows the sample size. The second to the fourth columns report the results of the smoothed LS
estimator for ψ, β & δ respectively. The fifth to the seventh columns present the results of the GMM
estimator. The last three columns show the results of the smoothed GMM estimator.

Table A10. Rejection Probabilities of the Linearity Test for the GMM Estimator
Sample Size

n = 50 n = 100 n = 200 n = 300 n = 500
b = 0 0.0955 0.077 0.0705 0.0645 0.0565
b = 0.2 0.088 0.1304 0.1959 0.2749 0.4313
b = 0.5 0.2699 0.5112 0.8446 0.9615 0.999
b = 0.8 0.5972 0.9115 0.9975 0.9995 0.9995
b = 1 0.8186 0.9945 0.9995 0.9995 0.9995

Note: This table presents the rejection rate of the linearity test for the GMM estimator. The first column
gives the different settings of the sample splittings. With b = 0, there is no threshold effect. Higher value
of b gives higher degree of the threshold effect.
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Table A11. Rejection Probabilities of the Linearity Test for the Smoothed GMM Esti-
mator

Sample Size
n = 50 n = 100 n = 200 n = 300 n = 500

b = 0 0.0115 0.0055 0.0140 0.0225 0.0325
b = 0.2 0.5815 0.7780 0.9605 0.9935 0.9995
b = 0.5 0.9645 0.9940 0.9995 1.0000 1.0000
b = 0.8 0.9890 0.9995 1.0000 1.0000 1.0000
b = 1 0.9905 0.9985 1.0000 1.0000 1.0000

Note: This table presents the rejection rate of the linearity test for the smoothed GMM estimator. The
first column gives the different settings of the sample splittings. With b = 0, there is no threshold effect.
Higher value of b gives higher degree of the threshold effect.

Table A12. Linear Dynamic Panel Threshold Model Simulation Results, δ = 0
FD-GMM System GMM

δ N β Mean β RMSE β Mean δ RMSE δ Mean β RMSE β Mean δ RMSE δ

0
100

0.5 0.3887 0.1307 0.4314 0.0911
0.95 0.0402 0.9317 0.9573 0.0419

200
0.5 0.4463 0.0734 0.4712 0.0511
0.95 0.0890 0.8825 0.9724 0.0385

Note: This table shows the estimation and testing results of the data generation process defined in 5.0.5
by using FD-GMM and system GMM approaches when δ = 0. The first column is the true value ofδ.
The second column is the cross-sectional sample size. The third column shows the true value ofβ. Mean
β/δ is the average value of β/δ estimates. RMSE β/δ is the root-mean-square error of β/δ estimates.

Table A13. Dynamic Panel Threshold Model Simulation Results, δ ∈ (−0.1,−0.5)
FD-GMM System GMM

δ N β Mean β RMSE β Mean δ RMSE δ Mean β RMSE β Mean δ RMSE δ

-0.1
100

0.5 0.3569 0.1951 -0.0469 0.4446 0.3903 0.1614 -0.0470 0.4199
0.95 0.2512 0.7328 -0.0386 0.1583 0.9281 0.1081 -0.0687 0.1929

200
0.5 0.4168 0.1630 -0.0725 0.3708 0.4360 0.1542 -0.0693 0.3700
0.95 0.4295 0.5623 -0.0559 0.1670 0.9767 0.1630 -0.0874 0.2037

-0.5
100

0.5 0.2977 0.3947 -0.1777 0.5653 0.4948 0.2066 -0.1744 0.5569
0.95 0.6544 0.3898 -0.2625 0.3774 0.9305 0.1258 -0.3417 0.3300

200
0.5 0.4953 0.3183 -0.4155 0.4406 0.4882 0.2121 -0.3910 0.4386
0.95 0.6949 0.2850 -0.3504 0.2988 0.9698 0.0553 -0.3657 0.2894

Note: This table shows the estimation and testing results of the data generation process defined in
5.0.5 by using FD-GMM and system GMM approaches when the true model is a nonlinear model.
The first column is the true value ofδ. The second column is the cross-sectional sample size. The third
column shows the true value ofβ. Mean β/δ is the average value of β/δ estimates. RMSE β/δ is the
root-mean-square error of β/δ estimates.
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Table A14. Estimation of Linear Model with Interaction Term

Linear FD-GMM Estimates Linear System-GMM Estimates
Dit 0.448 -0.132 0.898 1.313 1.757* 1.621* 0.955 -0.856

(0.915) (0.857) (0.879) (0.909) (0.955) (0.976) (0.852) (0.863)
Interaction 3.269** 4.571*** 2.635* 2.974** -0.215 -0.155 -0.223 2.058

(1.414) (1.390) (1.397) (1.434) (1.289) (1.335) (1.280) (1.274)
yit−1 0.663*** 0.501*** 0.483*** 0.471*** 1.003*** 0.841*** 0.774*** 0.732***

(0.010) (0.014) (0.013) (0.014) (0.000) (0.015) (0.015) (0.015)
yit−2 0.223*** 0.145*** 0.160*** 0.163*** 0.190*** 0.173***

(0.014) (0.015) (0.017) (0.015) (0.017) (0.017)
yit−3 0.148*** 0.152*** 0.040*** 0.167***

(0.012) (0.012) (0.013) (0.016)
yit−4 0.013 -0.069***

(0.011) (0.012)
Observations 5748 5595 5442 5289 5748 5595 5442 5289
Countries 154 154 154 154 154 154 154 154

Note: ∗ ∗ ∗, ∗∗, and ∗ denote statistical significance at a 1%, 5%, and 10% level, respectively. This table
reports the interaction estimates of the effect of democracy on GDP per capita, using ANRR-proposed
dichotomous measures of democracy, D. Standard errors robust against heteroskedasticity at the country
level are reported in parentheses. We control for a full set of country fixed effects. We use the lagged
GDP per capita as instrumental variables.

measures of democracy with a single lag. This subsection provides results for all speci-
fications up to three lags of GDP per capita for each alternative measure. Specifically,
Table A15 to Table A18 report the estimation results when we use a dichotomous version
of the Freedom House democracy index, Cheibub et al. (2009)’s measure of democracy,
Boix et al. (2012)’s measure of democracy, and Polity IV as the democracy measure,
denoted as D, in the dynamic threshold regression model.

Overall, except for the cases using Polity IV as the measure4, we observe that most
results remain consistent with those obtained with a single lag. This suggests that our
results are robust against variations in the measure of democracy for most specifications.

S7. A HEURISTIC EXAMPLE TO ILLUSTRATE THE SMOOTHNESS OF THE
GMM ESTIMATOR

To provide more intuition for the Theorem 4.2 in the paper and Theorem 1.1 in the
supplement section S1, we use a simple example to explain the smoothness of the GMM
and how the smoothness determines the asymptotic normality. Furthermore, this section
also aims to provide some background on the different asymptotic forms of the least
square estimator (LSE), the smoothed least square estimator (SLSE), the GMM esti-
mator (GMM), and the smoothed GMM estimator (SGMM). The model considered is
defined as follows,

yi = I(q1i + q2iψ0 ≤ 0) + εi,

where q1i, q2i ∼ U [0, 1], and εi ∼ N(0, σ2).

Thus, we assume all threshold variables are exogenous, and the threshold effect is fixed.

4In fact, the insignificance of Polity IV aligns with ANRR’s findings.
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Table A15. Estimation of Linear and Threshold Model Using House of Freedom as a
Measure of Decomcracy

Linear Threshold Linear Threshold Linear Threshold
ψ1 -4.2 -0.4 -2.6
ψ2 5 3.6 1.7

Low High Low High Low High
Dit 1.251** 1.740***5.610*** 1.458** 1.345*** 9.532 1.267** 0.956** 14.131**

(0.509) (0.557) (1.256) (0.596) (0.461) (6.610) (0.534) (0.434) (6.726)
yit−1 0.434***0.431***0.431***0.375***0.361***0.791***0.367***0.350***0.921***

(0.015) (0.015) (0.015) (0.017) (0.016) (0.151) (0.018) (0.019) (0.892)
yit−2 0.077***0.079*** -0.354** 0.056***0.048*** -0.982

(0.016) (0.012) (0.152) (0.020) (0.019) (1.077)
yit−3 0.058***0.069*** 0.506

(0.021) (0.018) (0.513)
Sup Wald 26.2 27.7 30.6
Boot P 0.000*** 0.000*** 0.000***
Observations 3533 1915 1618 3391 1342 2049 3249 2436 813
Countries 142 142 142 142 142 142

Note: ***, ∗∗, and ∗ denote statistical significance at a 1%, 5%, and 10% level, respectively. This table
reports the linear FD-GMM and threshold smoothed-FD-GMM estimates of the effect of democracy on
GDP per capita, using the House of Freedom as the dichotomous measure of democracy. The thresh-
old variables used are the ANRR-proposed dichotomous measures of democracy, D, and the polity IV
(multiplied by 0.1). Standard errors robust against heteroskedasticity at the country level are reported
in parentheses. We control for a full set of country and year fixed effects. We use the jack-knifed average
of democracy in a region × initial regime cell proposed by ANRR as the instrumental variables.

Table A16. Estimation of Linear and Threshold Model Using CGV as a Measure of
Decomcracy

Linear Threshold Linear Threshold Linear Threshold
ψ1 -4 -1.1 -2.2
ψ2 5 1.3 1.3

Low High Low High Low High
Dit 0.645** 0.964*** 2.776*** 1.051*** 1.261*** 0.797** 0.757** 0.517 0.645*

(0.319) (0.325) (0.643) (0.335) (0.337) (0.346) (0.353) (0.338) (0.384)
yit−1 0.442*** 0.440*** 0.440*** 0.379*** 0.358*** 0.793*** 0.361*** 0.343*** 0.354

(0.016) (0.010) (0.010) (0.017) (0.015) (0.156) (0.018) (0.018) (0.703)
yit−2 0.093*** 0.095*** -0.341** 0.062*** 0.054*** -0.425

(0.016) (0.007) (0.155) (0.020) (0.018) (0.953)
yit−3 0.066*** 0.073*** 0.535

(0.021) (0.018) (0.497)
Sup Wald 60.1 52.8 35
Boot P 0.000*** 0.000*** 0.000***
Observations 3533 1741 1792 3391 1427 1964 3249 2436 813
Countries 142 142 142 142 142 142

Note: ***, ∗∗, and ∗ denote statistical significance at a 1%, 5%, and 10% level, respectively. This table
reports the linear FD-GMM and threshold smoothed-FD-GMM estimates of the effect of democracy
on GDP per capita, using the CGV proposed by Cheibub et al. (2009) as the dichotomous measure of
democracy. The threshold variables used are the ANRR-proposed dichotomous measures of democracy,
D, and the polity IV (multiplied by 0.1). Standard errors robust against heteroskedasticity at the country
level are reported in parentheses. We control for a full set of country and year fixed effects. We use the
jack-knifed average of democracy in a region × initial regime cell proposed by ANRR as the instrumental
variables.
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Table A17. Estimation of Linear and Threshold Model Using BMR as a Measure of
Decomcracy

Linear Threshold Linear Threshold Linear Threshold
ψ1 -4 -4.6 -2.6
ψ2 5 4 1.6

Low High Low High Low High
Dit 0.615** 1.067***2.624*** 0.280 0.121 3.658*** 0.562 0.956***-16.949***

(0.311) (0.295) (0.580) (0.295) (0.267) (1.353) (0.339) (0.307) (6.126)
yit−1 0.439***0.441***0.442***0.373***0.360*** 0.412 0.364***0.330*** 1.795

(0.015) (0.013) (0.013) (0.017) (0.017) (0.412) (0.018) (0.016) (1.169)
yit−2 0.074***0.077*** 0.024 0.055*** 0.010 -2.084

(0.015) (0.014) (0.414) (0.020) (0.019) (1.558)
yit−3 0.065***0.095*** 0.733

(0.021) (0.016) (0.791)
Sup Wald 27.7 15 26.4
Boot P 0.000*** 0.1715 0.000***
Observations 3533 1741 1792 3391 2287 1104 3391 2436 813
Countries 142 142 142 142 142 142

Note: ***, ∗∗, and ∗ denote statistical significance at a 1%, 5%, and 10% level, respectively. This table
reports the linear FD-GMM and threshold smoothed-FD-GMM estimates of the effect of democracy
on GDP per capita, using the BMR proposed by Boix et al. (2012) as the dichotomous measure of
democracy. The threshold variables used are the ANRR-proposed dichotomous measures of democracy,
D, and the polity IV (multiplied by 0.1). Standard errors robust against heteroskedasticity at the country
level are reported in parentheses. We control for a full set of country and year fixed effects. We use the
jack-knifed average of democracy in a region × initial regime cell proposed by ANRR as the instrumental
variables.

Table A18. Estimation of Linear and Threshold Model Using Polity IV as a Measure of
Decomcracy

Linear Threshold Linear Threshold Linear Threshold
ψ1 -1.2 -0.9 -0.9
ψ2 5 1.1 1.1

Low High Low High Low High
Dit 0.066 -2.362*** 0.295 0.457 -0.745** 1.344 0.401 -1.267 1.334

(0.273) (0.664) (1.265) (0.359) (0.413) (0.954) (0.302) (0.848) (0.921)
yit−1 0.464*** 0.462*** 0.457***0.385***0.390***0.854***0.387***0.395***0.821***

(0.017) (0.016) (0.016) (0.017) (0.016) (0.171) (0.017) (0.017) (0.187)
yit−2 0.083***0.083*** -0.387** 0.082***0.081*** -0.433*

(0.015) (0.009) (0.171) (0.015) (0.010) (0.257)
yit−3 0.008 0.011 0.095

(0.018) (0.014) (0.126)
Sup Wald 148.6 21 26.3
Boot P 0.000*** 0.0108** 0.000***
Observations 3644 1520 2124 3502 1503 1999 3360 1415 1945
Countries 142 142 142 142 142 142

Note: ***, ∗∗, and ∗ denote statistical significance at a 1%, 5%, and 10% level, respectively. This table
reports the linear FD-GMM and threshold smoothed-FD-GMM estimates of the effect of democracy on
GDP per capita, using the polity IV as the measure of democracy. The threshold variables used are the
ANRR-proposed dichotomous measures of democracy, D, and the polity IV (multiplied by 0.1). Standard
errors robust against heteroskedasticity at the country level are reported in parentheses. We control for
a full set of country and year fixed effects. We use the jack-knifed average of democracy in a region ×
initial regime cell proposed by ANRR as the instrumental variables.
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S7.1. The LSE

As shown in Yu and Fan (2020), the LSE can be obtained as,

ψ̂ = arg min
ψ∈Θψ

Sn(ψ), (7.0.1)

where Sn(ψ) = 1
n

∑n
i=1 (I(ψ0) + εi − I(ψ))

2
and I(ψ) = I (q1i + q2iψ ≤ 0).

Assuming the knowledge of the consistency and the convergence rate, let ψ = ψ0 + v
n .

Following Yu and Phillips (2018), we can show the centered process as,

DLSE
n (v) = Sn(ψ)− Sn(ψ0) = n−1

n∑
i=1

(
I(ψ0 +

v

n
)− I(ψ0)

)2

+ 2n−1
n∑
i=1

(
I(ψ0 +

v

n
)− I(ψ0)

)
εi.

This implies,

n(ψ − ψ0) = arg min
v
nDLSE

n (v) =

{∑N1n(|v|)
i=1 z̄1i, if v ≤ 0∑N2n(v)
i=1 z̄2i, if v > 0

,

whereN1n(|v|) =
∑n
i=1 I

(
v
n ≤ −

q1i+q2iψ0

q2i
≤ 0
)

,N2n(v) =
∑n
i=1 I

(
0 ≤ − q1i+q2iψ0

q2i
≤ v

n

)
,

z̄1i = 1 + 2εi, and z̄2i = 1− 2εi
Note that for any finite number v, N2n(v) ∼ B(n, Pn(v)) where B(., .) is a binomial

process, Pn(v) = F (0) − F ( vn ) ≈ f(0) vn , where F (.) and f(.) are CDF and PDF of (-
q1i+q2iψ0

q2i
) respectively. Let λ = nPn(v). Hence, λ→ fz(0)v.5 As λ is a finite number, we

have N2n(v) → N2(v). Similarly, we have N1n(|v|) → N1(|v|), where N1(|v|), N2(v) are
two independent Poisson process with intensity fz(0).

As a result,

n(ψ̂ − ψ0)
d−→ arg min

v
DLSE(v), (7.0.2)

where DLSE(v) is a compound Poisson process with the form,

DLSE(v) =

{∑N1(|v|)
i=1 z1i, if v ≤ 0∑N2(v)
i=1 z2i, if v > 0

,

where z1i = lim∆↑0 z̄1iI
(

∆ ≤ − q1i+q2iψq2i
≤ 0
)

, and z2i = lim∆↓0 z̄2iI
(

0 ≤ − q1i+q2iψq2i
≤ ∆

)
.

S7.2. The SLSE

Following Seo and Linton (2007), the SLSE can be obtain as,

ψ̂SLSE = arg min
ψ∈Θψ

SSLSn (ψ), (7.0.3)

where SSLSn (ψ) = 1
n

∑n
i=1(yi − K(ψ, σn))2, K(ψ, σn) = K( q1i+q2iψσn

), K(.) is a kernel
function as defined in assumption 3 of Seo and Linton (2007), and σn is the bandwidth
parameter.

5With “diminishing threshold ”assumption, the convergence rate is slower than n. As a result, λ→∞,

which implies we have infinitely many − q1i+q2iψ0
q2i

in the local neighborhood of 0. Therefore, we can

apply central limit theorem for a given v.



S24 C. Chen et al.

Note that, unlike the LSE, the objective function in this case is smoothed in ψ. Hence,
we can apply the standard first order Taylor series to obtain the asymptotic normality.

By simple calculation, we have,

Tn(ψ, σn) =
∂SSLSn (ψ)

∂ψ
= − 2

n

n∑
i=1

I(ψ0)K ′(ψ, σn)
q2i

σn
+

2

n

n∑
i=1

K(ψ, σn)K ′(ψ, σn)
q2i

σn

(7.0.4)

− 2

n

n∑
i=1

K ′(ψ, σn)
q2i

σn
εi = A(ψ) +B(ψ) + C(ψ),

where K ′(ψ, .) = ∂K(.,.)
∂ψ .

First, by assmuption 3(b) of Seo and Linton (2007), we can show,

σ−hn A(ψ0)
p−→ σ−hn E

(
I(ψ0)K ′(ψ0, σn)

q2i

σn

)
= O(1),

where h defines hth order kernel.
This implies, as long as

√
nσnσ

−h
n → 0,

√
nσnA(ψ0) = op(1). Similarly, we can show

√
nσnB(ψ0)

p−→ 0.
Next, similar to the proof of lemma 3 of Seo and Linton (2007), we have,

√
nσnC(ψ0)

d−→ N
(
0, V ψ

)
,

where V ψ = 4V ar (K ′(ψ0, σn)q2iεi).
Hence, we have,

√
nσnTn (ψ0, σn)

d−→ N
(
0, V ψ

)
.

Then, by the first order Taylor series,

Tn

(
ψ̂SLSE , σn

)
= Tn(ψ0, σn) +Qn

(
ψ̃, σn

)(
ψ̂SLSE − ψ0

)
= 0,

where Qn(ψ) = ∂Tn(.,.)
∂ψ , and ψ̃ is between ψ̂SLSE and ψ0.

As σnQn

(
ψ̃, σn

)
p→ Q, we have√
nσ−1

n

(
ψ̂SLSE − ψ0

)
d−→ N

(
0, Q−1V ψQ−1

)
,

where Q = K ′(0)E
(
q2
2i|zi = 0

)
fz(0), zi = q1i + q2iψ0, and fz(.) is the density of zi.

S7.3. The GMM

We propose to use use the moment condition, E(q2iεi) = 0, for all i = 1, ..., n. Therefore,
the GMM estimator can be obtained as,

ψ̂GMM = arg min
ψ∈Θψ

SGMM
n (ψ), (7.0.5)

where SGMM
n =

(
1
n

∑n
i=1 q2i (I(ψ0) + εi − I(ψ))

)2
.

Similar to the LSE, the objective function is non-smooth in ψ. Now, assuming the
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knowledge of the consistency and the converge rate 6, let ψ = ψ0 + v
n1/2 . Hence, the

centered process can be shown as,

DGMM
n (v) = SGMM

n (ψ)− SGMM
n (ψ0) = n−2

[∑n
i=1 q2i

(
I(ψ0)− I(ψ0 + v

n1/2 )
)]2

+2n−2
∑n
i=1 q2i

(
I(ψ0)− I(ψ0 + v

n1/2 )
)∑n

i=1 q2iεi.

Note that, by comparing DLSE
n with DGMM

n , it is obvious that the second term is
quite different. For the DLSE

n , the sum of error cannot be isolated from v. As a result,
we cannot directly apply the central limit theorem (CLT) 7. On the contrary, for the
DGMM
n , the CLT can be applied to

∑n
i=1 q2iεi as long as the multiplier is bounded. The

reason comes from the nature of the sample averaging condition.
This implies,

n1/2(ψ − ψ0) = arg minv nDGMM
n (v) = arg minv n−1

[∑n
i=1 q2i

(
I(ψ0)− I(ψ0 + v

n1/2 )
)]2

+2n−1/2
∑n
i=1 q2i

(
I(ψ0)− I(ψ0 + v

n1/2 )
)

1
n1/2

∑n
i=1 q2iεi = arg minv A

GMM (v) +BGMM (v).

Then, by the Glivenko-Cantelli theorem, for any v,

AGMM (v)
p−→ n

[
E
(
q2i

(
I(ψ0)− I(ψ0 +

v

n1/2
)
))]2

= Gψ(ψ0)2v2,

where Gψ(ψ0)=dE(q2iI(ψ))
dψ |ψ=ψ0

.
Similarly, we can show that,

n−1/2
n∑
i=1

q2i

(
I(ψ0)− I(ψ0 +

v

n1/2
)
)

p−→ n1/2E
(
q2i

(
I(ψ0)− I(ψ0 +

v

n1/2
)
))

= Gψ(ψ0)v.

Hence, by applying the CLT and the continous mapping theorem,

BGMM (v)
d−→ Gψ(ψ0)vN(0, Ω),

where Ω = V ar(q2iεi).
This follows that,

n1/2
(
ψ̂GMM − ψ

)
d−→ v̂ = argmin

v
Gψ(ψ0)2v2 +Gψ(ψ0)vW,

where W ∼ N(0, Ω).
Obviously, v̂ = −W/Gψ(ψ0). This provides the asymptotic normality,

n1/2
(
ψ̂GMM − ψ0

)
d→ N

(
0,
(
Gψ(ψ0)Ω−1Gψ(ψ0)

)−1
)
.

S7.4. The Smoothed GMM

Again, we consider the moment condition E(q2iε) for all i = 1, ..., n. The smoothed GMM
estimator can be obtained as,

ψ̂SGMM = arg min
ψ∈Θψ

SSGMM
n (ψ), (7.0.6)

6The example is designed with a fixed threshold effect. Hence, the theoretical convergence rate of
threshold estimator is

√
n.

7With diminishing threshold framework, the functional central limit theorem can be applied to DLSEn ,
which leads to a limiting distribution formed by a two-sided Brownian motion (Hansen (2000)). Yu and
Phillips (2018) explains on how compound Poisson process can be approximated by two-sided Brownian
motion.
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where SSGMM
n =

[
1
n

∑n
i=1 q2i (I(ψ0) + εi −K(ψ))

]2
, and K(ψ) = K( q1i+q2iψhn

).

In contrast to the objective function of GMM method, SSGMM
n is differentiable over

ψ. Therefore, we can apply standard Taylor expansion to derive the limiting results by
imposing some assumptions on the kernel. Note that SSGMM

n is a quantity of the squared
of sample averages. However, SSLSEn is a quantity of an average over squared term.

By simple calculation, we have

T sn(ψ̂s, hn) = − 2

n

n∑
i=1

q2i [I(ψ)−K(ψ0)]
1

n

n∑
i=1

q2
2i

hn
K ′(ψ̂s) (7.0.7)

− 2

n

n∑
i=1

q2i

[
K(ψ0)−K(ψ̂s)

] 1

n

n∑
i=1

q2
2i

hn
K ′(ψ̂s)

− 2

n

n∑
i=1

q2iεi
1

n

n∑
i=1

q2
2i

hn
K ′(ψ̂s) = −2As(ψ̂s)− 2Bs(ψ̂s)− 2Cs(ψ̂s) = 0.

Comparing Cs(.) of (7.0.7) to C(.) of (7.0.4), the nature of the sample averaging in

the GMM allows us to apply CLT to 1√
n

∑n
t=1 q2iεi of Cs(.) as 1

n

∑n
i=1

q22i
hn
K ′(ψ̂s) =

Op(1). As a result, V ar (
√
nCs(.)) = Op(1). In contrast, V ar (

√
nC(ψ)) = Op(h

−1
n )

since K ′(ψ, σn) of C(ψ) cannot be isolated from applying the central limit theorem. In
addition, the feature of squared of the sample averaging of the GMM objective function
makes the first order Taylor expansion use up to the first order of K(.) in smoothed

GMM and implies
∂T sn(ψ̂s,hn)

∂ψ = Op(1). However, the first order Taylor expansion of the

smoothed least square objective function use up to the second order of K(.), which follows
∂Tn(ψ̂SLS ,hn)

∂ψ = Op(h
−1
n ).

Let gi(ψ) = q2i (I(ψ0) + εi −K(ψ)) andGi(ψ) = − q
2
2i

hn
K ′(ψ), we can rewrite T sn(ψ̂s, hn) =

0 as 1
n

∑n
i=1 gi(ψ̂

s) 1
n

∑n
i=1Gi(ψ̂

s) = 0. Applying Taylor expansion and by consistency,
we have

√
n
(
ψ̂s − ψ0

)
=

(
1

n

n∑
i=1

Gi(ψ̂
s)

)−2
1

n

n∑
i=1

Gi(ψ̂
s)

1√
n

n∑
i=1

[q2iεi + q2i (I(ψ0)−K(ψ0))] + o(1).

(7.0.8)

As shown in the proof of Theorem 4, we can show 1√
n

∑n
i=1 [q2iεi + q2i (I(ψ0)−K(ψ0))] =

1√
n

∑n
i=1 q2iεi + o(1)

d→ N(0, Ω) and 1
n

∑n
i=1Gi(ψ̂

s)
p→ E

(
q2
2i|vi = 0

)
fv(0), where vi =

q1i + q2iψ0. Hence, by continuous mapping theorem, we have
√
n
(
ψ̂s − ψ0

)
d→ N

(
0, Q−1

s ΩQ−1
s

)
. (7.0.9)
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