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Abstract

This paper considers an endogenous kink threshold regression model with an un-
known threshold value in a time series as well as a panel data framework, where both
the threshold variable and regressors are allowed to be endogenous. We construct our
estimators from a nonparametric control function approach and derive the consistency
and asymptotic distribution of our proposed estimators. Monte Carlo simulations are
used to assess the finite sample performance of our proposed estimators. Finally, we
apply our model to analyze the impact of COVID-19 cases on labor markets in the
US and Canada.
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1 Introduction

The threshold regression (TR) model is extensively used to capture potential shifts in

economic relationships; e.g., Tong (1990) and Hansen (2000). However, the conventional

TR model requires a discontinuous regression function at the true threshold level, yet in

many empirical applications, this discontinuity may not be warranted. As an alternative,

Chan and Tsay (1998) introduces a continuous threshold autoregressive model, allowing

for a piece-wise linear function of the threshold variable. This model permits a continuous

threshold regression but retains a slope discontinuity at the true threshold level, making

it a specific case within the broader class of threshold autoregressive models. Building

on Chan and Tsay (1998), Hansen (2017) extends the concept by introducing testing for

a threshold effect and inference on the regression parameters for a continuous threshold

model with an unknown threshold parameter value, referred to as the kink threshold re-

gression (KTR) model. It is well established that the least-squares estimator for the TR

model has a nonstandard limiting distribution and is super consistent. For instance, Chan

(1993) establishes, under a “fixed threshold effect” assumption, that the threshold param-

eter estimator converges to a function of a compound Poisson process. In contrast, under

a “diminishing threshold effect” assumption, Hansen (2000) shows that the limiting distri-

bution involves two independent Brownian motions. However, as shown in Hansen (2017),

the limiting distribution of the least-squares estimator for the KTR model is normal, and

the convergence rate is standard root-n due to continuity.

The above mentioned studies assume strict exogeneity for both slope regressors and

the threshold variable. As real-world nonlinear asymmetric mechanisms often involve en-

dogeneity, the literature on the TR model has evolved to account for this. Under Hansen

(2000)’s diminishing threshold effect framework, Caner and Hansen (2004) permit endoge-

nous slope regressors by employing generalized method of moments (GMM) and two-stage
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least squares (2SLS) to estimate the slope parameters. Inspired by the sample selection

method of Heckman (1979), Kourtellos et al. (2016) employ a control function (CF) ap-

proach to estimate the TR model with endogeneity, introducing an inverse Mills ratio as a

bias correction term. Following Kourtellos et al. (2016), Christopoulos et al. (2021) use a

copula method to handle the endogenous threshold variable. Yu et al. (2023) generalize the

CF approach of Kourtellos et al. (2016) and classify two groups of CF methods for the TR

model with endogeneity based on the choice of variables in the conditional set. One group

extends the 2SLS method of Caner and Hansen (2004), while the other is a natural exten-

sion of the conventional CF approach of Newey et al. (1999). It is important to note that

both CF methods cannot be directly used to estimate the KTR model with endogeneity.

In fact, continuity makes the inference of the least squares estimator for the KTR model

quite different from the conventional TR model even without endogeneity. Hidalgo et al.

(2019) emphasize that attempting to estimate a KTR model under the TR framework of

Hansen (2000), ignoring continuity of the true model, results in an irregular Hessian ma-

trix. 1 This makes the least squares estimator of the threshold parameter to converge at a

slower cube root-n rate, in contrast to the root-n rate for the KTR model (Hansen (2017)).

Consequently, both CF methods proposed by Yu et al. (2023), designed for the TR frame-

work, cannot apply to the KTR model without modification.2 More recently, Kourtellos

et al. (2022) extend Yu et al. (2023) to allow for an unknown endogenous form, introducing

a nonparametric bias correction term into the TR model. The proposed semiparametric

model avoids misspecification issues but remains within the TR model framework. Seo

and Shin (2016) consider a dynamic panel TR model with endogeneity and develop a first-

differenced GMM estimator that accommodates both endogenous threshold variables and

1Note that estimating the KTR model under the TR model framework violates the full rank condition

that is required for a non-degenerated asymptotic distribution of threshold estimator, see, e.g., Assumption

1.7 in Hansen (2000).
2The KTR model violates Assumption I.9 for CF-I and II.9 for CF-II in the Yu et al. (2023).
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regressors. Under a fixed threshold effect framework of Chan (1993) and assuming i.i.d.

samples, Yu and Phillips (2018) construct an integrated difference kernel estimator(IDKE)

for the threshold parameter. The IDKE offers consistency without requiring instrumental

variables and is super-consistent for the TR model with an endogenous threshold variable

and exogenous slope regressors. However, the i.i.d. assumption limits its applicability.

In contrast to many TR model studies, surprisingly, to our knowledge, no estimation

and asymptotic results for the least squares estimator of the KTR model with endogeneity

have been developed.3 Therefore, this paper aims to fill this gap in the literature. Building

upon the work of Yu et al. (2023) and Kourtellos et al. (2022), our study introduces a

two-step semiparametric CF approach to handle endogeneity in a KTR model, allowing for

both slope regressors and the threshold variable to be endogenous. Our main theoretical

contributions can be summarized in three aspects. Firstly, in the spirit of Kourtellos et al.

(2022), we employ a nonparametric error correction term to control for potential endogene-

ity, extending from a TR model to a KTR model. Our proposed estimator exhibits a joint

normal limiting distribution with a standard root-n convergence rate. Secondly, in the first

step, we adopt a nonparametric IV regression approach, differing from Kourtellos et al.

(2022) who employ a linear IV regression method. Consequently, our proposed two-step

nonparametric CF approach is more general, fitting within the framework of non/semi-

parametric estimation of the structural kink regression model. Thirdly, our method shares

similarities with Ozabaci et al. (2014), which address endogeneity in a nonparametric ad-

ditive regression model and can be expanded to a partially linear model, both through the

sieve approximation method.4 Yet, their results are not directly applicable to our situation

3We notice that the first-differenced GMM estimator proposed by Seo and Shin (2016) is applicable

to the KTR panel data model with endogeneity. In their work, they also introduce a two-stage least

squares (2SLS) estimator in the appendix; however, it is distinct from our approach. Their 2SLS estimator

specifically accommodates an endogenous regressor while maintaining the threshold variable as exogenous.
4Note that, to mitigate the curse of dimensionality, we adopt their approach by imposing additive

3



since our proposed semiparametric KTR model intentionally lacks smoothness at the kink

point. Technically, this necessitates the proof to verify a stochasticity equicontinuity con-

dition, extending Hansen (2017) from the finite dimension case to the infinite dimension

case. We establish this condition by following Chen (2007).

We develop the KTR model for both time series and panel data settings. In the time

series model, we focus on estimating and studying the asymptotic properties of the least

squares estimator with weakly dependent data. In the panel data context, we address time-

invariant fixed effects using the first-differencing (FD) method. We derive the asymptotic

results for our proposed estimator with a large number of cross-sections (N) and fixed time

periods (T ) observations. We then apply our model to assess the threshold effect of COVID-

19 cases on the labor markets of the United States and Canada. Since the beginning of

2020, the global economy has been significantly affected by the COVID-19 pandemic. A

multitude of studies have investigated its consequences and spread, analyzing both linear

and nonlinear aspects. For instance, Karavias et al. (2022) examines the structural effect of

COVID-19 on stock returns using a linear panel model with an unknown structural break

time. Considering the possible kink relationship between contact rate and the outbreak

of COVID-19, Lee et al. (2021) construct a Susceptible–Infected–Recovered (SIR) model

to monitor the outbreak via using reported cases of COVID-19. Regarding the labor

market, a body of literature explores the indirect effects of COVID-19, such as the impact

of government Stay-at-Home/Lockdown policies on the labor market (e.g., Baek et al.

(2021), Kong and Prinz (2020)). Other studies focus on investigating the effect of COVID-

19 on the labor market of some particular groups (e.g., Lee et al. (2021)). Surprisingly, few

studies examine the overall impact of COVID-19 on the entire labor market. Given the

prolonged duration and multiple waves of COVID-19 cases, we hypothesize the presence of

a threshold effect or structural break in the relationship between COVID-19 cases and the

constraints in both two regression stages.
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unemployment rate. Thus, we apply our proposed KTR model with endogeneity to explore

this potential nonlinearity. Our findings indicate that while the impact of COVID-19 on

unemployment is consistently positive in both regimes, it becomes more pronounced when

the number of cases exceeds a certain threshold.5

The rest of the paper is organized as follows. Section 2 introduces the times-series KTR

model with endogeneity, presenting the estimation method and asymptotic properties of

our proposed estimators. Section 3 extends the model to the panel data context. Section 4

reports Monte Carlo simulation results, suggesting our proposed estimator has a good small

sample performance. Section 5 provides our empirical application results, while section 6

concludes the paper. Additional materail and the mathematical proofs are provided in the

appendix/supplementary material.

To proceed, we adopt the following notation throughout the paper. We use subscript 0

to denote the true parameters and the accent ⋅̂ to denote the estimators. We define ∥⋅∥ as

the Euclidean norm and ∥⋅∥
∞
as the sup-norm. The operators

p→ and
d→ denote convergence

in probability and distribution, respectively. 0A×B denotes a A ×B matrix of zeros, while

Im denotes an identity matrix of size m. ∇M(a) denotes the first order partial derivative

of function M(⋅) with respect to a.

2 Time series model

2.1 Model and estimation

Following Hansen (2017), we consider a KTR model

yt = β10(xt − γ0)I(xt < γ0) + β20(xt − γ0)I(xt ≥ γ0) + z′tβ30 + ut, (1)

5We use the number of COVID-19 tests performed as the instrumental variable since it is strongly

correlated with the number of cases and has no relevance to the unemployment rate.
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where xt is a scalar and plays the role of the threshold variable, zt is an ℓ × 1 vector of

covariates and includes an intercept term, I(⋅) is the indicator function and ut is the error

term with zero mean and finite variance. In order to capture a potential dynamic feature

in the dependent variable, we allow to include the lagged dependent variable yt−1 in either

xt or zt. When xt = yt−1, eq.(1) becomes a self-exciting continuous threshold autoregressive

model, as in Chan and Tsay (1998).6 In model (1), we have d = 3 + ℓ parameters to be

estimated, including an unknown threshold value γ0 ∈ Γ, where Γ is a compact set.

In eq.(1), we allow either an endogenous threshold variable xt or endogenous regressors

z1,t, or both of them. 7 Note z1,t = [z11,t,⋯, zd11,t]′ is a subset of zt = [z′1,t, z′2,t]′. In order not to

lose generality, our theory is derived for a general case that both xt and zt are endogenous.

For k1 = 1,⋯, d1, denote pxt and pk1zt , as the vector of instrument variables for xt and z
k1
1t ,

respectively, where pxt and p
k1
zt , may include the lagged terms of (xt, zt), and are allowed to

have duplicate variables. To have enough instrument variables, we require the dimension of

pxt, dpx ≥ 1, and the dimension of pk1zt , d
k1
pz ≥ 1 for each k1. To simplify notation, we collapse

all instrumental variables as a vector pt, with elements including all non-overlapping terms

in pxt and p
k1
zt , for k1 = 1,⋯, d1.

To avoid the possibility of model misspecification, we assume a nonparametric structure

of the reduced-form equations.8 Specifically, the reduced-form equations of xt and z1,t are

xt = gx0(pxt) + vxt, (2)

zk11,t = gk1z0(pk1zt ) + vk1zt , for k1 = 1,⋯, d1, (3)

where gx0(⋅) and gk1z0(⋅) are an unknown function of pxt and p
k1
zt , respectively.

The endogeneity of the threshold variable xt and regressors z1,t comes from the contem-

6Note that Chan and Tsay (1998) consider a more general setup by considering yt−d as the threshold

variable for some positive integer d. Here we keep d = 1.
7Note when xt = yt−1, yt−1 is sequentially exogenous under Assumption T1.2.
8Note that both Kourtellos et al. (2022) and Yu et al. (2023) assume linear reduced forms.
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poraneous correlation between ut and vt, where vt = [vxt, v1zt,⋯, vd1zt ]′. Here we assume each

element of vt is independent of each other to simplify our analysis. Using the control func-

tion approach, we assume E (ut∣Ft−1, xt, z1,t) = E (ut∣vt) = h0(vt), almost surely, where Ft

is the smallest sigma-field generated from {xs, z1,s, z2,s+1, us, ps+1) ∶ 1 ≤ s ≤ t ≤ n}, and h0(⋅)

is an unknown function of vt. Therefore, we have

E(yt∣Ft−1, xt, z1,t) = β10(xt − γ0)I(xt < γ0) + β20(xt − γ0)I(xt ≥ γ0) + z′tβ30 + h0(vt). (4)

Denoting δ0 = β20 − β10, we rewrite model (1) as

yt = β10(xt − γ0) + δ0(xt − γ0)I(xt ≥ γ0) + z′tβ30 + h0(vt) + εt, (5)

where εt = ut − h0(vt). Note that, since E(εt∣Ft−1, xt, z1,t) = 0 almost surely, model (5) is

free of the endogeneity problem.

Below, we outline the steps taken to estimate model (5). Before doing so, it is important

to note that in our reduced-form equations, gx0(pxt), gk1z0(pk1zt ), for k1 = 1,⋯, d1, and h0(vt)

are all multi-factor nonparametric functions. To address the curse of dimensionality prob-

lem inherent in nonparametric estimation, we assume a nonparametric additive structure

among different factors in our reduced-form equations, as demonstrated in Ozabaci et al.

(2014).

To do that, we first define Ψ(v) = {ψ1(v), ψ2(v),⋯} as a typical sequence of orthonormal

basis functions in L2 space.9 For a vector of variables At = [A1,t,⋯,Ad2,t]′, let

Ψϑn(At) = [ψ1(A1,t),⋯, ψϑn(A1,t),⋯, ψ1(Ad2,t),⋯, ψϑn(Ad2,t)]′, (6)

where Ψϑn(At) is a (ϑnd2) × 1 vector. Then, we can approximate gx0(pxt), gz0(pzt), and
9In this paper, we use the normalized Hermite orthonormal basis functions to approximate the non-

parametric functions, which theoretically allows unbounded support for pt and vt.
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h0(vt) by

g∗x0(pxt) = Ψϑ1n(pxt)′βx0, (7)

gk1∗z0 (pzt) = Ψϑ1n(pk1zt )′βk1
z0 , for k1 = 1,⋯, d1, (8)

h∗0(vt) = Ψϑ2n(vt)′βh0, (9)

where βx0, β
k1
z0 , k1 = 1,⋯, d1, and βh0 are vectors of coefficients, with dimension (ϑ1ndpx)×1,

(ϑ1nd
k1
pz)×1, for k1 = 1,⋯, d1, and [ϑ2n(d1+1)]×1, respectively. Note that ϑ1n and ϑ2n control

the complexity of sieve space to approximate the unknown functions gx0(pxt) and gk2z0(pzt) in

our first-step regressions (i.e. eqs.(2)-(3)), and h0(vt) in our augmented regression (eq.(5)).

In sieve estimation, both ϑ1n and ϑ2n increase slowly with n. We assume that ϑ1n and

ϑ2n grow at different rates to better observe the effect of our first-step estimates on our

second-step estimates.

Now, we start to estimate the model. Among the commonly used semi-/nonparametric

kernel and sieve estimation methods, we specifically focus on the method of sieves for both

steps, as this method is particularly convenient for estimating the additive structure.

First step: By applying the OLS estimation to models (2) and (3), with more specific

expressions provided in eq.(7) and eq.(8), we obtain the linear sieve least squares estimator

ĝx(pxt) = Ψϑ1n(pxt)′[
n

∑
s=1

Ψϑ1n(pxs)Ψϑ1n(pxs)′]−1
n

∑
s=1

Ψϑ1n(pxs)xs,

ĝk1z (pk1zt ) = Ψϑ1n(pk1zt )′[
n

∑
s=1

Ψϑ1n(pk1zs)Ψϑ1n(pk1zs)′]−1
n

∑
s=1

Ψϑ1n(pk1zs)zk11s , for k1 = 1,⋯, d1.

Then, we collect the residuals v̂xt = xt−ĝx(pxt) and v̂k1zt = zk11,t−ĝk1z (pk1zt ), for each k1 = 1,⋯, d1.

We denote v̂t = [v̂xt, v̂1zt,⋯, v̂d1zt ]′.

Second step: Let β = [β1, δ, β′3]′, which is a (d − 1) × 1 vector. Then, by replacing

h0(⋅) with h∗(⋅), where h∗(⋅) = Ψϑ2n(⋅)′βh, and vt with v̂t, we construct the least squares

objective function for model (5) as follows:

Ŝn(β, γ, βh) =
1

n

n

∑
t=1

[yt − β1(xt − γ) − δ(xt − γ)I(xt ≥ γ) − z′tβ3 −Ψϑ2n(v̂t)′βh]2, (10)
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and the least squares estimator of model (5) solves the following optimization problem:

(β̂, γ̂, β̂h) = argmin
(β,γ,βh)∈B×Γ×Bh

Ŝn(β, γ, βh). (11)

Note that Ŝn(β, γ, βh) is non-smooth in γ. Therefore, we use a grid search method in

practice. For a given γ ∈ Γ, we obtain the least squares estimator of (β0, βh0) as follows:

[β̂(γ)′, β̂h(γ)′]
′ = [X̂(γ)′X̂(γ)]−1 X̂(γ)′y, (12)

where y = [y1, y2, . . . , yn]′ , X̂(γ) = [x̂1(γ), x̂2(γ), . . . , x̂n(γ)]′, and x̂t(γ) = [xt − γ, (xt −

γ)I(xt ≥ γ), z′t,Ψϑ2n(v̂t)′]′ for t = 1,⋯, n.

Next, we substitute (β, βh) by (β̂(γ), β̂h(γ)) into Ŝn(β, γ, βh) and obtain the estimator

of γ0 as follows:

γ̂ = argmin
γ∈Γ

Ŝn (β̂(γ), γ, β̂h(γ)) . (13)

Then, the profiled estimator for (β0, βh0) is given by (β̂, β̂h) = (β̂(γ̂), β̂h(γ̂)).

2.2 Assumptions and limiting results

Below, we list regularity assumptions used to establish the consistency and asymptotic

distribution of our proposed estimator.

Assumptions-time series.

Assumption T1:

T1.1. For some r > 1, (a) {(yt, xt, zt, pt)} is a strictly stationary, β-mixing sequence with

mixing coefficients α(m) = O(m−A) for some A > r/(r − 1); (b) E∣yt∣4r < ∞, E∣xt∣4r < ∞,

E ∥zt∥4r < ∞.

T1.2. (a) E(ut∣Ft−1, xt, z1,t) = E(ut∣vt) = h0(vt) almost surely for all t, where Ft is the small-

est sigma-field generated from {(xs, z1,s, z2,s+1, us, ps+1) ∶ 1 ≤ s ≤ t ≤ n} ; (b) {(vt,Ft−1)} is a

martingale difference sequence with E(vt∣Ft−1) = 0 almost surely; (c) E[u2t ∣Ft−1, xt, z1,t] < ∞.

Remark: Assumption T1.1(a) assumes a β-mixing sequence with a sufficiently fast de-

caying dependence over t, where r involves a trade-off between series correlation and the
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number of finite order of moments, see e.g., Hansen (2017). Assumption T1.1(b) provides

regular moment conditions. Assumptions T1.2(a)(b) define the endogeneity and ensure the

specification of eq.(5). Assumption T1.2(c) is a bounded conditional variance assumption

used to derive the convergence rate, see Newey (1997).

Assumption T2:

T2.1. gx0(⋅), gz0(⋅), and h0(⋅) all belong to H, a subset of Hölder functional space, Λη(⋅),

with η > max{(1 + d1)/2,2}. 10 All these unknown functions and their first-order deriva-

tives are uniformly bounded over R.

T2.2. Ψ(⋅) = {ψ1(⋅), ψ2(⋅),⋯} are uniformly bounded sequences of orthonormal basis func-

tions in Hn, a subset of Λη(⋅).

T2.3. (a) gx0(⋅) and gz0(⋅) are squared integrable, and there exist βx0, β
k2
z0 , and a finite

constant Cg satisfying

suppx∈R
dpx ∣gx0(px) −Ψϑ1n(px)′βx0∣ ≤ Cgϑ

−η
1n,

sup
p
k1
z ∈R

d
k1
pz
∣gk1z0(pk1z ) −Ψϑ1n(pk1z )′βk1

z0 ∣ ≤ Cgϑ
−η
1n, for k1 = 1, .., d1;

(b) h0(⋅) is squared integrable, and there exist βh0 and a finite constant Ch satisfying

supv∈R1+d1 ∣h0(v) −Ψϑ2n(v)′βh0∣ ≤ Chϑ
−η
2n.

T2.4. For a sufficiently large ϑ1n, there exist a set of constants (c, c), such that:

(a) −∞ < c ≤ λmin {E[Ψϑ1n(pxt)Ψϑ1n(pxt)′]} ≤ λmax {E[Ψϑ1n(pxt)Ψϑ1n(pxt)′]} ≤ c < ∞,

−∞ < c ≤ λmin {E[v2xtΨϑ1n(pxt)Ψϑ1n(pxt)′]} ≤ λmax {E[v2xtΨϑ1n(pxt)Ψϑ1n(pxt)′]} ≤ c < ∞;

(b) −∞ < c ≤ λmin {E[Ψϑ1n(pk1zt )Ψϑ1n(pk1zt )′]} ≤ λmax {E[Ψϑ1n(pk1zt )Ψϑ1n(pk1zt )′]} ≤ c < ∞,

−∞ < c ≤ λmin {E[(vk1zt )2Ψϑ1n(pk1zt )Ψϑ1n(pk1zt )′]} ≤ λmax {E[(vk1zt )2Ψϑ1n(pk1zt )Ψϑ1n(pk1zt )′]} ≤ c <

∞, for k1 = 1,⋯, d1;

(c) L is full rank in column, where L is defined beneath eq.(15).

10The Hölder functional space is widely used in semiparametric estimation. Any function belonging to

this space can be well approximated by the sieve method. For details, see, e.g., Section 2.3.1 in Chen

(2007).
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Remark: Assumption T2 provides the necessary conditions for our nonparametric func-

tions, gx0(⋅), gz0(⋅), h0(⋅) and the set of basis functions, Ψ(⋅). Specifically, Assumption T2.1

requires that all our nonparametric functions belong to the Hölder functional space Λη(⋅), a

standard requirement in sieve estimation. Assumption T2.2 imposes properties of the basis

functions. Assumptions T2.3 (a)-(b) control the sieve approximation bias. To allow the

infinite support of variables in our unknown functions, we restrict the space of unknown

functions for our analysis.11 For a nonparametric function with bounded support, we can

directly apply Theorem 1.1 of Dzyadyk and Shevchuk (2008), which indicates Assumptions

T2.3 (a)-(b) hold given gx0(⋅), gz0(⋅) and h0(⋅) all η-smooth. In cases where variables have

unbounded support, as in our use of the normalized Hermite orthonormal basis functions,

we can apply the result of Xiang (2012). In that, the hold of Assumptions T2.3(a)-(b)

requires gx0(⋅), gz0(⋅) and h0(⋅) have the lowest level of smoothness ϱ, with ϱ > 2(η + 1).

Assumption T2.4 is a full rank condition.

Assumption T3:

T3.1. δ0 ≠ 0 and h0(⋅) ≠ 0 holds over at least one non-empty interval of its domain.

T3.2. (a) ϕ = (β, γ, h) ∈ (B,Γ,H) = Φ, ϕ0 = (β0, γ0, h0) ∈ (B,Γ,H) = Φ,

ϕ∗ = (β, γ, h∗) ∈ (B,Γ,Hn) = Φn, ϕ∗0 = (β0, γ0, h∗0) ∈ (B,Γ,Hn) = Φn,

and βh0 ∈ Bh, where B, Γ and Bh are all compact sets;

(b) ϕ0 is the unique minimizer of E[εt(ϕ)2] over the space Φ, where

εt(ϕ) = yt − β1(xt − γ) − δ(xt − γ)I(xt ≥ γ) − z′tβ3 − h(vt).

T3.3. For any ϑ2n, there exist constants c2 and c2 such that −∞ < c2 ≤ λmin {E[xt(γ)x′t(γ)]} ≤

λmax {E[xt(γ)x′t(γ)]} ≤ c2 < ∞, and −∞ < c2 ≤ λmin {E[ε2txt(γ)x′t(γ)]} ≤ λmax {E[ε2txt(γ)x′t(γ)]} ≤
11For sieve approximation of a nonparametric function with unbounded support variables, another pos-

sible solution is to apply the results of Chen et al. (2005). They introduce a weighted sup-norm metric

distance between the nonparametric function and its sieve approximation, similar to the trim method used

in the kernel approximation.
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c2 < ∞ hold uniformly over γ ∈ Γ, where xt(γ) equals x̂t(γ) with v̂t being replaced with vt.

T3.4. xt has a density function f(x) and f(x) ≤ f̄ < ∞ over its domain for some finite

constant f̄ .

Remark: Assumption T3 is a prerequisite for establishing the asymptotic properties of

the estimator for the parameters (β, γ). Assumption T3.1 ensures the existence of the

threshold effect. Assumption T3.2 (a) assumes the compactness of the parameter space,

while Assumption T3.2 (b) provides an identification assumption similar to Assumption 2.1

in Hansen (2017). Assumption T3.3 ensures the existence of (β̂(γ), β̂h(γ)) for any γ ∈ Γ.

Denote ∥Ψϑn∥
2
P
= maxs≤P supv∈R ∥∇sΨϑn(v)∥

2
, where ∇sΨϑn(⋅) is the sth derivative of

Ψϑn(⋅). We then have ∥∇Ψϑn∥P = O(ϑ
P+1/2
n ) (see, e.g., the normalized Hermite functions

and wavelet functions defined in Blundell et al. (2007)).

Assumption T4: As n→∞, ϑ1n →∞, ϑ2n →∞, and ∥Ψϑ2n∥1 (ϑ
−η
1n +
√
ϑ1n/n)

√
ϑ2n = o(1).

Remark: Assumption T4 imposes restrictions on the smoothing parameters ϑ1n and ϑ2n

that are needed to derive the consistency in Theorem 1-time series. Note that the conver-

gence rate of our first-step sieve estimator is Op(ϑ−η1n +
√
ϑ1n/n), which is standard in the

literature (see, e.g., Newey (1997)). Thus, ∥Ψϑ2n∥1 (ϑ
−η
1n +
√
ϑ1n/n)

√
ϑ2n = o(1) is needed to

derive the consistency results of θ̂. Here, we assume ϑ1n ≠ ϑ2n to demonstrate the effect of

the first-step estimator. However, in practice, it is convenient to set ϑ1n = ϑ2n, simplifying

Assumption T4 to ϑ4
2n/n = o(1), as seen in, for example, Assumption A.5∗ in Ozabaci et al.

(2014).

Below, we present the limiting results of our proposed estimator.

Theorem 1-time series. Denote θ0 = (β′0, γ0)
′
, θ̂ = (β̂′, γ̂)′, ĥ(⋅) = Ψϑ2n(⋅)′β̂h, and

ϕ̂n = (θ̂, ĥ). Under Assumptions T1-T4, as n→∞, we have

d (ϕ̂n, ϕ0) = Op

⎛
⎝
ϑ−η2n +

√
ϑ2n

n

⎞
⎠
, (14)

where d (ϕ̂n, ϕ0) = ∥θ̂ − θ0∥ + ∥ĥ − h0∥∞.
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Theorem 1-time series establishes the consistency and the convergence rate of our pro-

posed estimator, where the proof follows Theorems 3.1 and 3.2 of Chen (2007). For any

ϕ ∈ Φ, denoting

Ht(θ) = −
∂

∂ϕ
εt(ϕ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(xt − γ)

(xt − γ)I(xt ≥ γ)

zt

β1 + δI(xt ≥ γ)

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (15)

Ht = Ht(θ0), and mt = Htεt, we obtain the limiting distribution of our proposed estimator

blow.

Theorem 2-time Series. Under Assumptions T1-T4, as n→∞, we have

√
n(θ̂ − θ0)

d→ N [0, (L′L)−1L′V L(L′L)−1] , (16)

where V = limn→∞ V ar (mt) and L = E [∂Htεt/∂θ′].

Remark: The proof of Theorem 2-time series is given in the supplementary appendix,

in which the proof follows Theorem 2 of Chen et al. (2003). The slope and threshold

value estimators converge at the root-n rate and are jointly normally distributed with

a non-zero asymptotic covariance. To make an inference, given the sieve estimates ϕ̂n,

the asymptotic variance-covariance matrix can be consistently estimated by using V̂n =

n−1∑n
t=1mt(ϕ̂n)mt(ϕ̂n)′ and L̂n = n−1∑n

t=1 ∂[Ht(θ̂)ε̂t(ϕ̂n)]/∂θ′, where mt(ϕ̂) = Ht(θ̂)ε̂t(ϕ̂n)

and ε̂t(ϕ̂n) = yt − β̂1(xt − γ̂) − δ̂(xt − γ̂)I(xt ≥ γ̂) − z′tβ̂3 −Ψϑ2n(v̂t)′β̂h. The full expression of

L̂n is presented in the supplementary appendix.

3 Panel data model extension

Many empirical problems of nonlinear asymmetric mechanisms are explicitly within a panel

data context, including but not limited to the potential threshold effect of COVID-19 on

13



the unemployment rate which we will discuss more in section 5. Therefore, we extend our

baseline time series model to a panel data endogenous kink threshold panel model with

unknown fixed effects. Below, we present our model, the estimation strategy, and the

asymptotic results.

3.1 Model and estimation

Following the general setup in the panel data literature, we consider the panel data with

sufficiently large numbers of cross-sectional units N and a small time period T . Our panel

kink threshold regression model is defined as follows:

yi,t = β10(xi,t − γ0)I(xi,t < γ0) + β20(xi,t − γ0)I(xi,t ≥ γ0) + z′i,tβ30 + bi + ui,t, (17)

for i = 1,⋯, n,and t = t0,⋯, T ,12 where yi,t is the dependent variable, xi,t is a scalar thresh-

old variable, zi,t is an ℓ × 1 vector of time-varying regressors,13 bi is the ith unobserved

individual fixed effect, and ui,t is the error term.

Denote the vector of coefficients β0 = (β10, β20, β′30)′ ∈ Rk−1, with k = 3 + ℓ. The unknown

12Here we set t starts at t0 to avoid the missing value problem caused by taking the first differences and

possible lagged variables in our regression.
13Here, we focus on the static panel data KTR model. For a dynamic panel data KTR model, one could

apply the GMM method introduced by Seo and Shin (2016), which is something we did not consider in

the present paper. The reason for not including the dynamic version of the panel model is that, within

a control function approach to solve endogeneity, we would need to derive an expression for the first-

step regression. In a dynamic panel data KTR model, the lagged dependent variables cannot be used

as instrumental variables, as we would encounter a recursive endogeneity problem. Our method can be

extended to accommodate the dynamic model by constructing the first-step regression using exogenous

variables other than its own lagged term. It’s important to note that these exogenous variables must have

a strong explanatory or predictive power for the dependent variable. However, in practice, finding such

exogenous variables can be a challenging task, and we do not see any advantages compared to the existing

GMM method introduced by Seo and Shin (2016).
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threshold value γ0 is an interior point of a compact set, Γ. Again, we allow the endoge-

nous threshold variable, xi,t and endogenous regressors z1,i,t, where z1,i,t is a d1 × 1 vector,

which is a subset of zi,t = [z′1,i,t, z′2,i,t]′. Naturally, we also allow endogeneity arising from

Cov(xi,t, bi) ≠ 0 and Cov(zi,t, bi) ≠ 0. To remove the time-invariant fixed effects, we apply

the first-differencing method to model (17), and by denoting δ0 = β20 − β10, we obtain

∆yi,t = β10∆xi,t + δ0(Xi,t − γ0τ2)′Iit(γ0) +∆z′i,tβ30 +∆ui,t, (18)

where ∆ai,t = ai,t − ai,t−1 denotes the first difference of variable a, τm is an m × 1 vector of

ones,

Xi,t − γ0τ2 =
⎛
⎜⎜
⎝

xi,t − γ0

xi,t−1 − γ0

⎞
⎟⎟
⎠

and Ii,t(γ0) =
⎛
⎜⎜
⎝

I(xi,t ≥ γ0)

−I(xi,t−1 ≥ γ0)

⎞
⎟⎟
⎠
.

Endogeneity in model (18) arises from the contemporaneous correlation between (xi,t, z1,i,t)

and ui,t. The reduced form equations for xi,t and z1,i,t are given by

xi,t = gx0(px,i,t) + vx,i,t, (19)

z1,i,t = gk1z0(pk1z,i,t) + vk1z,i,t, for k1 = 1,⋯, d1, (20)

where px,i,t and p
k1
z,i,t, for k1 = 1,⋯, d1 are allowed to share common variables. To simplify

notation, we denote all instrumental variables, including px,i,t and pk1z,i,t, for k1 = 1, .., d1,

as pi,t. Additionally, we define vi,t = [vx,i,t, v1z,i,t, ..., vd1z,i,t]
′
as a (1 + d1) × 1 vector. Note

that, since we assume endogeneity arises from the correlation between vx,i,t and vz,i,t with

the error term ui,t, this implies Cov(xi,t, ui,t) ≠ 0 and Cov(z1,i,t, ui,t) ≠ 0. To simplify our

analysis, we assume Cov(vx,i,t, vz,i,t) = 0.

Using the control function approach and denoting gv0(⋅) as an unknown function of vi,t,

for each i, we assume E (ui,t∣Fi,t−1, xi,t, z1,i,t) = E (ui,t∣vi,t) = gv0(vi,t) almost surely, where

Fi,t is the smallest sigma-field generated from {(xi,s, z1,i,s, z2,i,s+1, ui,s, pi,s+1) ∶ 1 ≤ s ≤ t ≤ T}.
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Under the law of iterative expectation, we have

E(ui,t∣Fi,t−2, xi,t, xi,t−1, zi,t, z1,i,t−1, pi,t)

= E[E(ui,t∣Fi,t−1, xi,t, z1,i,t)∣Fi,t−2, xi,t, xi,t−1, zi,t, z1,i,t−1, pi,t]

= E(gv0(vi,t)∣Fi,t−2, xi,t, xi,t−1, zi,t, z1,i,t−1, pi,t) = gv0(vi,t)

and E(ui,t−1∣Fi,t−2, xi,t, xi,t−1, zi,t, z1,i,t−1, pi,t) = E(ui,t−1∣Fi,t−2, xi,t−1, z1,i,t−1) = gv0(vi,t−1) since

future information does not affect past information. Therefore, E(∆ui,t∣Fi,t−2, xi,t, xi,t−1, zi,t, z1,i,t−1, pi,t) =

h0(vi,t, vi,t−1), where h0(vi,t, vi,t−1) = gv0(vi,t) − gv0(vi,t−1). It then follows that

E(∆yi,t∣Fi,t−2, xi,t, xi,t−1, zi,t, z1,i,t−1, pi,t) (21)

= β10∆xi,t + δ0(Xi,t − γ0τ2)′Iit(γ0) +∆z′i,tβ30 + h0(vi,t, vi,t−1).

Given above equation, we can rewrite model (18) as

∆yi,t = β10∆xi,t + δ0(Xi,t − γ0τ2)′Iit(γ0) +∆z′i,tβ30 + h0(vi,t, vi,t−1) +∆εi,t, (22)

where ∆εi,t =∆ui,t−h0(vi,t, vi,t−1). Note that, sinceE(∆εi,t∣Fi,t−2, xi,t, xi,t−1, zi,t, z1,i,t−1, pi,t) =

0 almost surely, model (22) is free of the endogeneity problem.

Similar to the time-series model, for a vector of variables Ai,t = [A1,i,t,⋯,Ad2,i,t]′, let

ΨϑN
(pi,t) = [ψ1(A1,i,t),⋯, ψϑn(A1,i,t),⋯, ψ1(Ad2,i,t),⋯, ψϑN

(Ad2,i,t)]′,

which is a (ϑNdp)×1 vector of orthonormal basis functions. Then the series approximations

of gx0(px,i,t), gk1z0(pk1z,i,t), and gv0(vi,t) are given as folows:

g∗x0(px,i,t) = Ψϑ1N
(px,i,t)′βx0, (23)

gk1∗z0 (pz,i,t) = Ψϑ1N
(pz,i,t)′βk1

z0 , for k1 = 1,⋯, d1, (24)

g∗v0(vi,t) = Ψϑ2N
(vi,t)′βh0,

where βx0, β
k1
z0 , k1 = 1,⋯, d1, and βh0 are vectors of coefficients, with dimension (ϑ1Ndpx)×1,

(ϑ1Nd
k1
pz) × 1, for k1 = 1,⋯, d1, and [ϑ2N(d1 + 1)] × 1, respectively. Thus, we can express the
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series approximation for h0(vi,t, vi,t−1) as

h∗0(vi,t, vi,t−1) = g∗v0(vi,t) − g∗v0(vi,t−1) =∆Ψϑ2N
(vi,t)′βh0, (25)

where ∆Ψϑ2N
(vi,t) = Ψϑ2N

(vi,t) −Ψϑ2N
(vi,t−1).

Next, we proceed to show the estimation strategy for our LS sieve estimator.

First step: By applying the OLS estimation to models (19) and (20) with the more

specific expressions in eq.(23) and eq.(24), we obtain

ĝ∗x(px,i,t) = Ψϑ1N
(px,i,t)′[

N

∑
i=1

T

∑
s=t0

Ψϑ1N
(px,i,s)Ψϑ1N

(px,i,s)′]−1
N

∑
i=1

T

∑
s=t0

Ψϑ1N
(px,i,s)xi,s,

ĝk1∗z (pk1z,i,t) = Ψϑ1N
(pk1z,i,t)′[

N

∑
i=1

T

∑
s=t0

Ψϑ1N
(pk1z,i,s)Ψϑ1N

(pk1z,i,s)′]−1
N

∑
i=1

T

∑
s=t0

Ψϑ1N
(pk1z,i,s)zk11,i,s,

for k1 = 1,⋯, d1. Similarly, we get ĝ∗x(px,i,t−1) and ĝk1∗z (pk1z,i,t−1), for k1 = 1,⋯, k1. Then,

we collect the residuals v̂x,i,t = xi,t − ĝ∗x(px,i,t), v̂x,i,t−1 = xi,t−1 − ĝ∗x(px,i,t−1) and v̂k1z,i,t = zk11,i,t −

ĝk1∗z (pk1z,i,t), v̂k1z,i,t−1 = zk11,i,t−1 − ĝk1∗z (pk1z,i,t−1) for each k1 = 1,⋯, d1.

Second step: By replacing (vi,t, vi,t−1) with (v̂i,t, v̂i,t−1) in eq.(22) and eq.(25), we

obtain the following least squares criterion function

SN(β, γ, βh) =
1

N

N

∑
i=1

T

∑
t=t0

{∆yi,t − β1∆xi,t − δ(Xi,t − γτ2)Ii,t(γ) −∆z′i,tβ3 −∆Ψϑ2N
(v̂i,t)′βh}

2
,

(26)

and our least squares estimator is the minimizer of SN(β, γ, βh); i.e.,

(β̂, γ̂, β̂h) = argmin
(β,γ,βh)∈B×Γ×Bh

SN(β, γ, βh). (27)

For a given γ ∈ Γ, we obtain the conditional least squares estimator of (β0, βh0),

[β̂(γ)′, β̂h(γ)′]′ = [
N

∑
i=1

T

∑
t=t0

∆̂xi,t(γ)∆̂xi,t(γ)′]−1
N

∑
i=1

T

∑
t=t0

∆̂xi,t(γ)∆yi,t, (28)

where ∆̂xi,t(γ) = [∆xi,t, (Xi,t − γτ2)′Ii,t(γ),∆z′i,t,∆Ψϑ2N
(v̂i,t)′]′.

Next, by substituting (β, βh) with (β̂(γ), β̂h(γ)) into ŜN(β, γ, βh), we obtain the esti-

mator of γ0,

γ̂ = argmin
γ∈Γ

ŜN (β̂(γ), γ, β̂h(γ)) . (29)

Then, the least squares estimator for (β0, γ0, βh0) is given by (β̂, γ̂, β̂h) = (β̂(γ̂), γ̂, β̂h(γ̂)).
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3.2 Assumptions and limiting results

In this subsection, we will derive the limiting result of our proposed estimator for the panel

data model. Below, we outline the necessary regularity conditions.

Assumptions -panel.

Assumption P1: For some ξ > 1,

P1.1. (a) {(yit, xit, zit, pit) ∶ t = 1,2,⋯} are independently identically distributed (i.i.d.)

across index i; (b) E∣∑T
t=t0 ∆yit∣4ξ < ∞, E∣∑T

t=t0 ∆xit∣4ξ < ∞, E ∥∑T
t=t0 ∆zit∥

4ξ < ∞.

P1.2. For all 1 ≤ i ≤ N , (a) E (ui,t∣Fi,t−1, xi,t, z1,i,t) = E (ui,t∣vi,t) = gv0(vi,t) almost surely for

all t0 ≤ t ≤ T , where Fi,t is the smallest sigma-field generated from {(xi,s, z1,i,s, z2,i,s+1, ui,s, pi,s+1) ∶

1 ≤ s ≤ t ≤ N}; (b) {(vi,t,Fi,t−1)} is a martingale difference sequence with E(vi,t∣Fi,t−1) = 0

almost surely; (c) E[∆u2i,t∣Fi,t−1, xi,t, z1,i,t] < ∞.

Assumption P2:

P2.1. gx0(⋅), gz0(⋅), and h0(⋅) belong to H, a subset of Hölder functional space, Λη(⋅),

with η > max{(1 + d1)/2,2}, all unknown functions and their first-order derivatives are

uniformly bounded over R.

P2.2. Ψ = {ψ1, ψ2,⋯} are uniformly bounded, sequences of orthonormal basis functions in

HN , a subset of Λη(⋅).

P2.3. gx0(⋅), gz0(⋅) and gv0(⋅) are squared integrable, and there exist βx0, βz0, βh0 and

finite constant C, that:

suppx∈R
dpx ∣gx0(px) −Ψϑ1N

(px)′βx0∣ ≤ Cϑ−η1N ,

sup
p
k1
z ∈R

d
k1
pz
∣gk1z0(pk1z ) −Ψϑ1N

(pk1z )′βk1
z0 ∣ ≤ Cϑ

−η
1N , for k1 = 1,⋯, d1,

supv∈R1+d1 ∣gv0(v) −Ψϑ2N
(v)′βh0∣ ≤ Cϑ−η2N .

P2.4. for a sufficiently large ϑ1n, there exist a set of constant (c, c),

(a) −∞ < c ≤ λmin {E[∑T
t=t0 Ψϑ1N

(px,i,t)Ψϑ1N
(px,i,t)′]} ≤ λmax {E[∑T

t=t0 Ψϑ1N
(px,i,t)Ψϑ1N

(px,i,t)′]} ≤

c < ∞,
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−∞ < c ≤ λmin {E[∑T
t=t0 v

2
x,i,tΨϑ1N

(px,i,t)Ψϑ1n(px,i,t)′]} ≤ λmax {E[∑T
t=t0 v

2
x,i,tΨϑ1N

(px,i,t)Ψϑ1N
(px,i,t)′]} ≤

c < ∞;

(b) −∞ < c ≤ λmin {E[∑T
t=t0 Ψϑ1N

(pk1z,i,t)Ψϑ1N
(pk1z,i,t)′]} ≤ λmax {E[∑T

t=t0 Ψϑ1N
(pk1z,i,t)Ψϑ1N

(pk1z,i,t)′]} ≤

c < ∞,

−∞ < c ≤ λmin {E[∑T
t=t0(v

k1
z,i,t)2Ψϑ1N

(pk1z,i,t)Ψϑ1N
(pk1z,i,t)′]} ≤ λmax {E[∑T

t=t0(v
k1
z,i,t)2Ψϑ1N

(pk1z,i,t)Ψϑ1N
(pk1z,i,t)′]} ≤

c < ∞, for k1 = 1,⋯, d1.

(c) L is full rank in column, where L is defined under eq.(31).

Assumption P3:

P3.1. δ0 ≠ 0 and h0(⋅) ≠ 0 holds over at least one non-empty interval of its domain.

T3.2 (a) ϕ0 = (β0, γ0, h0) ∈ (B,Γ,H) = Φ, βh0 ∈ Bh ⊂ R1+d1 , ϕN = (β0, γ0, h∗) ∈ (B,Γ,HN) =

ΦN , both B,Γ and Bh are compact set;

(b) ϕ0 is the unique minimizer of E[∑T
t=t0 ∆εi,t(ϕ)2] over the space Φ, where

∆εi,t(ϕ) =∆yi,t − β1∆xi,t − δ(Xi,t − γ)Ii,t(γ) −∆z′i,tβ3 − h(vi,t, vi,t−1) with ϕ = (β, γ, h) ∈ Φ.

P3.3. for any ϑ2N , there exist constants c2 and c2 such that −∞ < c2 ≤ λmin {E[∑T
t=t0 ∆xi,t(γ)∆x′i,t(γ)]} ≤

λmax {E[∑T
t=t0 ∆xi,t(γ)∆x′i,t(γ)]} ≤ c2 < ∞, and −∞ < c2 ≤ λmin {E[∑T

t=t0 ∆ε
2
i,t∆x

∗
i,t(γ)∆x∗′i,t(γ)]} ≤

λmax {E[∑T
t=t0 ∆ε

2
i,t∆x

∗
i,t(γ)∆x∗′i,t(γ)]} ≤ c2 < ∞ hold uniformly over γ ∈ Γ, where ∆xi,t(γ)

equals ∆̂xi,t(γ) with (v̂i,t, v̂i,t−1) being replaced with (vi,t, vi,t−1).

P3.4. xi,t has a density function f(x) and f(x) ≤ f̄ < ∞ over its domain for some finite

constant f̄ .

For a scalar v, let ∥ΨϑN
∥2
P
=maxs≤P supv∈R ∥∇sΨϑN

(v)∥2, where ∇sΨϑN
(⋅) is the sth deriva-

tive of ΨϑN
(⋅). We then have ∥∇ΨϑN

∥
P
= O(ϑP+1/2N ) (see, e.g., the normalized Hermite

functions and wavelet functions defined in Blundell et al. (2007)).

Assumption P4: ϑ1N →∞, ϑ2N →∞; ∥Ψϑ2N
∥1 (ϑ

−η
1N +

√
ϑ1N/N)

√
ϑ2N = o(1).

Remark: Note that the assumption of i.i.d. across i can be relaxed to allow for indepen-

dent but not identically distributed (inid) observations. Discussions on other assumptions

of the panel KTR model mirrors that of the time series KTR model; thus, we will not
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repeat it here.

Theorem 1- panel. Denote θ0 = (β′0, γ0)′, θ̂ = (β̂′, γ̂)′, ĥ(⋅) = ∆Ψϑ2N
(⋅)′β̂h, and

ϕ̂N = (θ̂, ĥ). Then, under Assumptions P1-P4, as N →∞, with a fixed T , we have

d(ϕ̂N , ϕ0) = Op

⎛
⎝
ϑ−η2N +

√
ϑ2N

N

⎞
⎠
, (30)

where d(ϕ̂N , ϕ0) = ∥θ̂ − θ0∥ + ∥ĥ − h0∥∞.

Let

Hi,t(β, γ) = −
∂

∂ϕ
∆εi,t(ϕ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∆xit

(Xi,t − τ2γ)Ii,t(γ)

∆zi,t

−δτ ′2Ii,t(γ)

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (31)

Hi,t =Hi,t(θ0), mi,t =Hi,t∆εi,t, V = limN→∞∑T
t=t0 V ar [mi,t], and L = ∑T

t=t0 E [∂Hi,tεi,t/∂θ′].

Theorem 2-panel. Under Assumptions P1-P4, as N →∞, we have

√
N (θ̂ − θ0)

d→ N [0, (L′L)−1L′VL(L′L)−1] . (32)

Remark: The proof is provided in the appendix. Similar to the time series model, our

slope and threshold estimators are jointly normally distributed with root-N convergence

rate and they have a non-zero asymptotic covariance matrix. To make an inference, given

the sieve estimate ϕ̂N , the asymptotic variance-covariance matrix can be consistently esti-

mated by using V̂N = N−1∑N
i=1∑T

t=t0
[mi,t(ϕ̂N)mi,t(ϕ̂N)′] , L̂N = N−1∑N

i=1∑T
t=t0 ∂[Hi,t(θ̂)εi,t(ϕ̂N)]/∂θ′,

and mi,t(ϕ̂N) = Hi,t(θ̂)∆ε̂i,t(ϕ̂N), with ∆ε̂i,t(ϕ̂N) = ∆yi,t − β̂1∆xi,t − δ̂(Xi,t − τ2γ̂)Ii,t(γ̂) −

∆z′i,tβ̂3 − ∆Ψϑ2N
(v̂i,t)′β̂h. The full expression of L̂N is presented in the supplementary

appendix.
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4 Monte Carlo simulations

This section contains Monte Carlo simulations to evaluate the finite sample performance

of our proposed estimator. Below, we list the following data-generating processes (DGPs).

DGP1: yt = c0 + β10xt + δ0(xt − γ0)I(xt ≥ γ0) + β30yt−1 + ut, ut = 0.1εt + κ sin(vt),

xt = 0.7 + 0.5 sin(xt−1) + vt, t = 1,⋯, n. (33)

In the time series setup, DGP1 considers the endogeneity of xt, which comes from the

common factor vt between xt and ut. We set (εt, vt) ∼ i.i.d.N(0, I2), x1 = 0 and remove the

first two observations to avoid the effect of starting value. The unknown true parameter

values are c0 = β10 = δ0 = 1, β30 = 0.5, and γ0 = 1. We use κ to control the severity of

endogeneity. The MC results for DGP1 are presented in Table 1.

[Table 1]

In Table(1), we let κ equal 2,1,0.05, and set n = [100,200,400]. We compare the results

of our proposed estimator with those of the least squares estimator, without considering the

endogeneity issue, under different sample sizes. In this context, we deliberately keep the

polynomial order at 6 to place our emphasis on tracking the convergence of our proposed

estimator as the sample size (n) increases.14. First, we find that under different levels of

endogeneity (i.e., κ = 2,1), the estimator of (β1, δ, γ) using the control function approach

provides a consistent estimate. In contrast, the least squares estimator ignoring the endo-

geneity shows inconsistency. For the coefficient for the exogenous variables zt, β3, while the

least squares estimator without CF appears to be barely affected by the endogeneity of xt,

we still observe that our proposed estimator employing CF outperforms the one without

14We also investigate the impact of varying the order of polynomials. We adjust the order of the basis

functions, ϑ1n and ϑ2n, across [3,4,5,6]. Under our DGP1, we observe that the RMSE of the estimators

for all different orders of polynomials show consistency. We display that in the appendix.
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CF. Turning to the weak endogeneity case (i.e., κ = 0.05), we note that both estimators -

those employing the control function approach and those not utilizing it - perform well. In-

terestingly, the estimator without the control function approach exhibits a smaller RMSE.

This is likely because, in cases with a relatively small sample size and weak endogeneity,

the sieve estimator produces a larger variance.15.

DGP2: yi,t = c0 + β10xi,t + δ(xi,t − γ0)I(xi,t ≥ γ0) + β30zi,t + ui,t,

ui,t = 0.1εi,t + κ[sin(v1,i,t) + sin(v2,i,t],

xi,t = 0.7 + 0.5 sin(xi,t−1) + v1,i,t, zi,t = 0.7 + 0.5 sin(Zi,t−1) + v2,i,t,

i = 1,⋯,N, t = 1,⋯, T . (34)

For the panel data model, we consider DGP2, which involves an endogenous threshold

variable, xi,t, and an endogenous regressor, zi,t. The endogeneity of xi,t comes from the

common factor v1,i,t, between xi,t and the error term ui,t, and the endogeneity of zi,t comes

form the common factor v2,i,t sharing with ui,t. We set (ε1,i,t, v1,i,t, v2,i,t) ∼ i.i.d.N(0, I3).

The unknown parameters are c0 = 0, β10 = −0.5, δ0 = 1.2, β30 = 0.4, and γ0 = 1. With a fixed

T = 10, we let N = [20,40,80].

The MC results for DGP2 are reported in Table 2.

[Table 2]

In Table 2, to modulate the level of endogeneity, we choose κ from 2, 1, and 0.05. Notably,

the findings from our panel Monte Carlo simulations align with those observed in the time

series analysis 16.

15With a weak endogeneity(κ = 0.05), as we expand the dataset to n = 800, the estimator employing the

control function approach continues to outperform the one without using it.
16Similar as in the time series model, under our DGP2, we test the effect of the order of polynomials

by choosing ϑ1N = ϑ2N among [3,4,5,6]. The MC results of the estimators with all different orders of

polynomials show consistency and convergence. We present the results in the supplementary appendix.
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5 Empirical application: The effect of COVID-19 on

the US and Canadian labour markets

Since the worldwide outbreak in early 2020, all countries have suffered tremendously from

the COVID-19 pandemic. For the labor market, there is a strand of literature that examines

the indirect effect of COVID-19 on the labor market, for example, measuring the impact

of the government Stay at Home/Lockdown policy on the labor market (e.g., Baek et al.

(2021), Kong and Prinz (2020)). Using individual-level data, Lee et al. (2021) find that

the negative impact of COVID-19 on the labor market spread unequally across the popula-

tion. Among other interesting findings, we observe that the unemployment rates for most

advanced economies have recovered to the pre-COVID level, while the pandemic was still

ongoing. This fact motivated us to investigate the potential nonlinear relationship between

COVID-19 cases and labor market performance, whereas the potential nonlinearity is tied

to the occasional lockdown policies introduced by governments to ease up pandemic pres-

sure on hospitals as cases surge. One difficulty in estimating the nonlinear effect of the case

numbers on unemployment is endogeneity since there is strong evidence that COVID-19

case numbers are endogenous. Extending the canonical epidemiology model, Eichenbaum

et al. (2021) find that during COVID-19, people cut back on working to avoid being af-

fected. On the other hand, the increase in unemployment reduced the possible increases

in contamination at the workplace and as such may have helped reduce the spread of the

disease. Thus, we can expect the relationship to have a two-way causality endogeneity. In

this section, we study the effect of COVID-19 on the Canadian and US labor markets by

using our proposed endogenous kink threshold panel model. We collect monthly data for

each province/state. Canadian data spans from July 2020 to September 2021, while the

US data spans from July 2020 to Dec 2021. As we use a two-period lagged variable in our

regression, we drop the data for the first few months to avoid zero values. The covered
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periods are long enough to capture multiple waves of COVID-19 outbreaks, which provide

an overall picture of this relationship17. We propose to use the following KTR model to

examine our hypothesis

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Uneit = β0 + βlow(Caseit − γ0)I(Caseit < γ0) + βhigh(Caseit − γ0)I(Caseit ≥ γ0)

+bi + uit,

Caseit = β10 + g1(Testi,t) + g2(Casei,t−1) + vit,

(35)

where i represents a province for Canadian data and a state for US data, and t refers to

the time. The dependent variable of interest, Uneit, is the monthly seasonally adjusted

unemployment rate, and Caseit is the natural logarithm of the number of cases confirmed

for COVID-19 in the tth month.18 Also, Testit equals the natural logarithm of the number

of tests conducted in the tth month. And, bi is the individual fixed effect, which captures

the idiosyncratic characteristics of provinces/states. Considering the potential bidirectional

causality between Uneit and Caseit, we thereby apply the CF approach, given in Section

3.1, to estimate the model (35). In particular, we use the lagged term of the endogenous

variable, Casei,t−1 and Testi,t as the instrument variable19. The functions g1(⋅) and g2(⋅)

are unknown. In our estimation, we approximate them using the 6th-order Hermite basis

functions.

As a comparison, we also estimate and report the linear panel regression model, which

17To save space, we merge the data description and the table containing information about

provinces/states in our dataset in the appendix.
18Note that we remove all log(0) by 0 to avoid the calculation problem. The same procedure is applied

to the Test variable.
19It is intuitive to assume Testi,t has no direct effect on the unemployment rate and can be viewed as

an exogenous variable. At the same time, it is highly associated with the endogenous variable Casei,t.

Therefore, Testi,t is a valid IV.
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is in the following form

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Uneit = β0 + βlinearCaseit + bi + uit,

Caseit = β10 + g1(Testi,t) + g2(Casei,t−1) + vit.
(36)

Similar to the KTR model, we also employ a CF method to deal with the endogeneity in

the linear panel model by taking the following steps. We first take the first differencing

to remove the individual fixed effects to estimate the model. Then, we obtain the OLS

residuals from the reduced form equation of caseit and include it as an additional regressor

in the first-differenced model to correct for endogeneity. Last, we apply the OLS method

to estimate the augmented first-differenced unemployment rate model. In short, the esti-

mation procedure for model (36) is similar to the estimation strategy introduced in Section

3.1, except it does not require a grid search over γ.

Table 3 reports the estimation results for Canadian data. Regressions (1) and (2) report

the results from the linear and KTR models without controlling for endogeneity, respec-

tively. Specifically, the estimate for βlinear of the linear model is positive and statistically

significant. For the KTR model, although the coefficient estimates for both the low and high

regimes are positive - with the impact on the unemployment rate being more pronounced

in the higher regime when the number of COVID-19 cases exceeds 32604 - we do not find

any significance in the model for either regime. The results from using a control function

approach to address the endogeneity are presented in the last two columns of Table 3. We

observe that the coefficient estimate of COVID-19 for the linear model with endogeneity

correction is similar to that without controlling for endogeneity, yet it remains insignifi-

cant. In the KTR model, when comparing to results without accounting for endogeneity,

we observe a more pronounced threshold effect: The coefficient estimate in the low regime

diminishes but remains insignificant, while the coefficient in the high regime increases and

becomes significant. We also apply the linearity and endogeneity test for Regression (4).
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To test for nonlinearity, we perform a bootstrapping test for the existence of a threshold

effect following Hansen (1996, 2017). Our null hypothesis of interest is βlow,0 = βhigh,0. We

repeat 10,000 simulations for the bootstrapping and obtain a p-value equal to 0.2447. The

test fails to reject the null of linearity. For the endogeneity test, we apply the Wald test20

and the test statistic equals 15.3589, which is greater than the critical value of 12.592 at

the 0.05 significance level. This implies the existence of endogeneity.

Table 4 summarizes the estimation results for the US data. Similar to Table 3, regression

(1) provides the results for the linear model, while regression (2) offers those for the KTR

model, with neither controlling for endogeneity. Unlike the results from the Canadian data,

the coefficient estimate from the linear model is negative, albeit still insignificant. In the

KTR model, we split into two regimes based on a threshold level of 39,344 cases for that

month. The coefficient for the low regime (βlow) is negative but not significant. Similar

to our findings in the Canadian dataset, we observe a non-significant positive effect in the

high regime. Regressions (3) and (4) present the estimation results using the CF approach.

After correcting for endogeneity, we observe that the magnitude of the coefficient estimate

for both the linear and the KTR model becomes more pronounced. Additionally, the level

of the threshold estimate rises dramatically from 39,344 to 116,891. Interestingly, while the

impact in the low regime remains negative, it now becomes significant. A potential reason

for this might be the inherent stickiness of the labor market. If employers believe that the

impact of the pandemic will be short-lived and not overly severe, the demand for labor

remains steady. However, as some employees fall ill and others may play a wait-and-see

strategy, there emerges a shortfall in the labor supply, indicating a tightening labor market.

As a result, the influence of COVID-19 on the unemployment rate remains negative until

the number of cases surpasses a certain threshold. In the high regime, we observe a positive

20To save space, we relegate the endogenous test to our online appendix. For further details, refer to

Section ?? in the Supplementary Material.
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and significant effect of COVID-19 cases on the unemployment rate, thus our conclusion

mirrors what we found with the Canada dataset. The adverse impact of COVID-19 on

the labor market becomes evident only when the number of confirmed cases reaches a

significant magnitude. Focusing on Regression (4), we also implement the threshold effect

test and obtain the bootstrap p-value= 0.0288. We reject the null hypothesis of linearity

at 5% significant level, favoring the KTR model. The Wald test for endogeneity yields

a statistic equal to 66.9861, which is greater than the critical value at the 5% significant

level, 15.3589. This suggests the existence of endogeneity in Casei,t. Both test statistics

support our hypotheses.

6 Conclusion

Extending Hansen (2017), we consider a kink threshold model with endogeneity. Following

Kourtellos et al. (2016) and Yu et al. (2023), we employ the nonparametric control func-

tion approach to tackle the endogeneity and propose a two-step semiparametric estimator.

Compared to other methods that address endogeneity in the context of a threshold regres-

sion model, our method is both easier to apply and more reliable, especially with a small

sample size and our Monte Carlo simulations support that. We apply our model to the

potential nonlinear effect of COVID-19 cases on the unemployment rate in Canada and the

US and we find that COVID-19 cases have a significant negative effect on labor market

activity, but only when the number of confirmed cases surpasses a certain threshold. Below

that level, the impact is positive, possibly due to the stickiness of labor demand.
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Table 1: DGP1-Main

β1 δ β3 γ

bias rmse bias rmse bias rmse bias rmse

NO CF/κ = 2 n=100 0.0227 0.6005 0.8707 1.171 -0.0963 0.1017 -0.9138 1.0315

n=200 -0.1153 0.4408 1.0269 1.1208 -0.0924 0.0951 -1.0199 1.0494

n=400 -0.1516 0.3436 1.0585 1.0964 -0.0899 0.0913 -1.0485 1.0576

CF/κ = 2 n=100 0.2527 0.5264 0.2304 0.5929 -0.0557 0.0737 -0.4081 0.6009

n=200 0.1688 0.319 0.0561 0.2674 -0.0295 0.0498 -0.2706 0.4353

n=400 0.0977 0.1974 -0.0199 0.1443 -0.0148 0.0341 -0.1278 0.2332

NO CF/κ = 1 n=100 0.1976 0.2875 0.209 0.2768 -0.0532 0.0609 -0.538 0.5705

n=200 0.1643 0.2299 0.2286 0.2672 -0.05 0.0541 -0.5645 0.5832

n=400 0.1611 0.2004 0.2253 0.2469 -0.048 0.0502 -0.5701 0.5806

CF/κ = 1 n=100 0.1858 0.2429 0.0344 0.1785 -0.0301 0.051 -0.1553 0.2411

n=200 0.1114 0.1579 -0.0156 0.1176 -0.0149 0.0375 -0.0862 0.1389

n=400 0.0525 0.1016 -0.0227 0.0792 -0.0077 0.0273 -0.0441 0.0804

NO CF/κ = 0.05 n=100 0.0229 0.035 -0.0001 0.0349 0.0049 0.0226 -0.0143 0.0403

n=200 0.0255 0.0314 -0.0003 0.024 0.0066 0.0172 -0.0074 0.0275

n=400 0.028 0.0303 -0.0004 0.0171 0.0068 0.0129 -0.002 0.0143

CF/κ = 0.05 n=100 0.1858 0.2429 0.0344 0.1785 -0.0301 0.051 -0.1553 0.2411

n=200 0.1114 0.1579 -0.0156 0.1176 -0.0149 0.0375 -0.0862 0.1389

n=400 0.0525 0.1016 -0.0227 0.0792 -0.0077 0.0273 -0.0441 0.0804

Note: This table presents bias and root mean squared error(rmse) of our proposed estimator.

We use 6th-order Hermite basis functions for both first-step and second-step estimation(i.e.,ϑ1n =

ϑ2n = 6). κ controls the level of endogeneity and CF denotes the use of the control function

approach, see eq.(33) for a detailed description.
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Table 2: DGP2-Main

β1 δ β3 γ

T=10 bias rmse bias rmse bias rmse bias rmse

NO CF/κ = 2 N=20 -0.1443 0.9956 0.876 1.7408 1.237 1.2422 -1.0162 1.3142

N=40 -0.2739 0.7644 1.1063 1.5121 1.2343 1.2369 -1.1885 1.3187

N=80 -0.342 0.588 1.2281 1.3548 1.2312 1.2325 -1.2884 1.3213

CF/κ = 2 N=20 0.0984 0.4585 0.0696 0.5318 0.3123 0.3809 -0.405 0.6754

N=40 0.0705 0.2432 -0.0223 0.217 0.1457 0.2088 -0.1863 0.3786

N=80 0.0126 0.1365 -0.0305 0.1219 0.0551 0.1139 -0.0849 0.1821

NO CF/κ = 1 N=20 0.1654 0.3478 0.1937 0.3296 0.6184 0.6211 -0.7334 0.779

N=40 0.1666 0.2764 0.1842 0.2661 0.617 0.6183 -0.7491 0.7734

N=80 0.1713 0.2319 0.1748 0.2206 0.6156 0.6163 -0.753 0.7662

CF/κ = 1 N=20 0.1447 0.2157 -0.0554 0.1902 0.1567 0.1928 -0.1198 0.2275

N=40 0.0664 0.1178 -0.0407 0.1072 0.0728 0.1062 -0.0527 0.1028

N=80 0.0144 0.0691 -0.0228 0.0692 0.0276 0.0584 -0.0295 0.061

NO CF/κ = 0.05 N=20 0.0303 0.0387 -0.0105 0.0321 0.0308 0.0323 -0.0139 0.038

N=40 0.0329 0.0368 -0.0099 0.0232 0.0309 0.0316 -0.0071 0.0267

N=80 0.035 0.0366 -0.0098 0.0179 0.0308 0.0311 -0.0018 0.0135

CF/κ = 0.05 N=20 0.0092 0.0475 -0.0029 0.072 0.0085 0.0333 -0.0028 0.0397

N=40 0.0036 0.033 -0.0024 0.0514 0.0036 0.0224 -0.0007 0.0214

N=80 0.0009 0.0225 -0.0009 0.0346 0.0016 0.015 -0.0001 0.0079

Note: This table presents bias and root mean squared error(rmse) of our proposed estimator. We

use 6th-order Hermite basis functions for both first-step and second-step estimation(i.e.,ϑ1n =

ϑ2n = 6). κ controls the level of endogeneity and CF denotes the use of the control function

approach, see eq.(34) for a detailed description.
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Table 3: Correlation between the unemployment rate and COVID-

19 cases(Canada dataset)

(1) (2) (3) (4)

Model Linear Threshold Linear Threshold

γ(Case) 10.3922∗∗∗ 10.3922∗∗∗

(0.1317) (0.7257)

βlinear 0.1442∗∗ 0.1401

(0.0707) (0.0871)

βlow 0.1209 0.0323

(0.1015) (0.2379)

βhigh 0.8269 1.6587∗∗∗

(0.5815) (0.6199)

Control function ✓ ✓

Nlow 122 122

Nhigh 14 14

Ntotal 136 136 136 136

NOTE: ∗∗∗, ∗∗, ∗ indicate significance at 1% level, 5% level, 10% level,

respectively;

Wald endogeneity test: H0 ∶ βh0 = 0ϑ2N
, Wn = 15.3589 > 12.592(α = 0.05);

Linearity test: βlow = βhigh, Pn = 0.2447.
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Table 4: Correlation between unemployment rate and COVID-19

cases(US dataset)

(1) (2) (3) (4)

Model Linear Threshold Linear Threshold

γ(Case) 10.580∗∗∗∗ 11.669∗∗∗

(0.663) (0.374)

βlinear −0.012 −0.157∗∗∗

(0.045) (0.035)

βlow −0.054 −0.245∗∗∗

(0.119) (0.075)

βhigh 0.056 0.249∗∗∗

(0.292) (0.084)

Control function ✓ ✓

Nlow 551 783

Nhigh 333 101

Ntotal 884 884 884 884

NOTE: ∗∗∗, ∗∗, ∗ indicate significance at 1% level, 5% level, 10% level,

respectively;

Wald endogeneity test: H0 ∶ βh0 = 0ϑ2N
, Wn = 66.9861 > 12.592(α =

0.05);

Linearity test: βlow = βhigh, Pn = 0.029.
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