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Outlines

Extension to ARCH & GARCH model Jump [Online Lecture]
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Integreted GARCH (IGARCH) (Nelson 1990)

Recall the Random Walk (RW) model

yt = yt−1 + εt ,

Et−1(εt) = 0,

y0 = 0.

Two properties it has are:

Et(yt−1) = yt (Today’s value is the best forecast of tomorrow’s value),

yt = ε1 + ε2 + ... + εt (shocks have a permanent impact).

A random walk is somtines referred to as ab integrated or I(1) process
because we add (integrate) the εt ’s to get yt .
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Integreted GARCH (IGARCH) (Nelson 1990) Cont.

Next consider a GARCH(1,1) with a restriction that α1 + β1 = 1:

εt = vt
√

ht|t−1

Et−1(v
2
t ) = 1, Et−1(Vt) = 0

ht|t−1 = α0 + α1ε2t−1 + β1ht−1

=⇒ Et−1(ht+1|t) = α0 + α1Et−1(ε
2
t) + β1ht|t−1

= α0 + (α1 + β1)ht|t−1.

Hence, α1 + β1 = 1 implies Et−1(ht+1|t) = α0 + ht|t−1.

So, apart from α0, the best forecast of next periods conditional
variance (ht+1|t) is last period’s conditional variance (ht|t−1).

So, in this way the GARCH(1,1) with α1 + β1 = 1 resembles the RW
or I(1) model.

Chaoyi Chen (BCE & MNB) Extension to ARCH & GARCH model 5 / 15



Integreted GARCH (IGARCH) (Nelson 1990) Cont.

Therefore, Nelson (1990) refers to this as Integrated-GARCH
(IGARCH) model.

On the other hand IGRACH differs from the RW model in that shocks
to the conditional variance are not permanent.
To see this, express GARCH(1,1) as an ARCH(∞):

ht|t−1 = α0 + α1ε2t−1 + β1ht−1|t−2 = α0 + α1Lε2t + β1Lht|t−1

=⇒ (1− β1L)ht|t−1 = α0 + α1Lε2t

=⇒ ht|t−1 =
1

(1− β1L)
α0 +

1

(1− β1L)
α1Lε2t

=
α0

1− β1
+ α1 ∑

j=0∞

βj
1L

j+1ε2t =
α0

1− β1
+ α1 ∑

j=0∞

βj
1ε2t−j−1.

The shocks are only permanent if β1 = 1, α1 + β1 = 1 does not imply permanent
shocks.

Empirical appeal of IGARCH

GARCH(1,1) often fits financial data (e.g. stock returns) quite well.

Often α̂1 + β̂1 ≈ 1.
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ARCH-M model (Engle, Lilien, and Robins, 1987)

ARCH in mean - (ARCH-M) Model
Intuition:

During periods of high volatility, stocks carry greater risk.
In order for investors to continue holding stocks during these volatile
periods, this risk must be compensated by higher expected returns.
Put, another way, the risk premium on the stock (e.g. additional
expected return to compensate the risk of holding the stock) should
increase during votile periods.
By this logic, if our ARCH model predicts a high volatility, it should
also predict a higher risk premium & therefore a higher expected return.
The ARCH-M models this effect by introducing the conditional
variance (ht|t−1) from the ARCH model into the model for the mean

return (yt):

yt = β + δht|t−1 + ε,

ε = vt
√

ht|t−1, Et−1(vt ) = 0, & Et−1(v
2
t ) = 1,

ht|t−1 = α0 +
q

∑
i=1

αi ε
2
t−i ,

 Standard ARCH model

where δht|t−1 measures the conditional variance impacts yt directly.
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ARCH-M model (Engle, Lilien, and Robins, 1987) Cont.

Notice that the expected return in this model is given by

Et(yt+1) = β + δht+1|t .

If markets are efficient, then Et(yt+1) = β + δht+1|t can be
interpreted as a risk premium.

For δ > 0, the risk premium increases with the predicted future
volatility (ht+1|t) in accordance with financial theory.

Notice that, unlike the other GARCH models, we’ve discussed so far,
the GARCH-M model changes your forecast for the mean return &
not just for the squared returns:

ŷt+1|t = β̂ + δ̂ĥt+1|t .
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Threshold GARCH (TARCH)

Stylized empirical facts: Bad news increases market volatility more
than good news.
Of course, bad news usually associated with negative returns.
Implications: large negative returns (bad news) increase future
volatility more than large positive returns (good news).
This introduces an asymmetry into the GARCH process, whereby the
past squared returns have a different impact depending on whether
they represent good/bad news.
Threshold GARCH (TGARCH) captures this by introducing a dummy
variable to capture bad news (bad news dummy)

dt =

{
1, εt < 0 (bad news)

0, εt ≥ 0 (good news or no news)
.
Then they interact the bad news dummy with the past squared
returns together

ht|t−1 = α0 + α1ε2t−1 + λ1dt−1ε2t−1 + β1ht−1|t−2.
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Threshold GARCH (TARCH) Cont.

If the news at t − 1 is good (ε2t−1 ≥ 0), then
1 dt−1 = 0
2 ht|t−1 = α0 + α1ε2t−1 + β1ht−1|t−2
3 The coefficient on ε2t−1 is α1.

If the news at t − 1 is bad then
1 dt−1 = 1
2 ht|t−1 = α0 + (α1 + λ1ε2t−1 + β1ht−1|t−2)
3 The coefficient on ε2t−1 is α1 + λ1

Note that if λ > 0 then
∗ Good news coefficient = α1 < α1 + λ1 = bad news coefficient on ε2t−1.
∗ So the shock (εt−1) of equal magnitude increase expected future

volatility more if it is a bad news shock than if it is a good news shock.

This canbe interpreted as a threshold model, in which the coefficients
change as a certain threshold is passed: Here εt−1 = 0 is the
threshold.

The asymmetric effect captured for this model is often referred to as
the “leverage effect”.
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Leverage effect interpretation

Leverage refers to the extent to which debt financing is used relative
to the equity financing.

A firm with higher leverage is one with a higher proportion of debt
financing.

Two pieces to the argument for why debt financing (or leverage) can
give rise to the type of asymmetric effects captured by TARCH:

Leverage makes the stock price more vulnerable:
Why? Leverage casues the shoreholder to take a large position in the
underlying assets of the firm. Thus if magnifies any change in the value
of these assets.
A fall in stock price (bad news) increases leverage thereby increasing
future volatility.
Why? When the stocks fall, the firms out-standing debt remains
unchange but its equity level aotomatically falls with the price of the
stock.
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Leverage effect example: Home mortgage

You buy a $100 thousand dollar house using a 20% ($ 20k) down
payment and an 80% ($ 80K) mortgage .
To illustrate leverage effects, suppose there is a 10% decline in the
value of the house in of the two subsequent years. Suppose that no
principle is paid by the mortgage

Home %∆ Debt Equity Return (% ∆)
Year Price Price Level in house in equity

1 (purchase) 100 N/A 80 20 N/A

2 90 -10% 80 10 100%( 10−2020 ) = −50%
3 81 -10% 80 1 100%( 1−1010 ) = −90%

Note how this illustrates the two pieces of the leverage argument discussed above:
1 Leverage magnifies the volatility of the return:

The value of the house changed by onlty 10%. The value of equity in
the house changed by 50 or 90%.

2 A negative return increases leverage & volatility.
After the first house price drop debt financing increased from
80/100× 100% = 80% to 80/90× 100%.
Consequently, the same 10% drop in price led to a 90% drop in equity
instead of the previous 50% drop.
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Exponential GARCH (EGARCH) (Nelson, 1991)

Instead of modeling ht|t−1 directly, the EGARCH model is linear
model for ln(ht|t−1):

ln(ht|t−1) = α0 + α1(
εt−1√
ht−1|t−2

) + λ1|
εt−1√
ht−1|t−2

|+ β1ln(ht−1|t−2).

Note that because x = e ln(x), this implies an exponential model for
ht|t−1:

ht|t−1 = e ln(ht|t−1) = exp(α0 + α1(
εt−1√
ht−1|t−2

) + λ1|
εt−1√
ht−1|t−2

|+ β1ln(ht−1|t−2)).

Recall that ex = exp(x) > 0 even for x < 0, in which case ex is
small, but still positive.
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Exponential GARCH (EGARCH) (Nelson, 1991) Cont.

One advantage of the EGARCH is that it gaurantees ht|t−1 > 0
without requiring coefficient restrictions:

1 For example, we do not require α0 > 0 or α1 > 0 or λ1 > 0, etc, in an
EGARCH model.

Similarly, it is no longer necessary to have the past ε′ts enter as
squared values.

For example the term α1(
εt−1√
ht−1|t−2

) can be either positive or negative

depending on the sign of the ε2. Yet either way, ht|t−1 will be positive.

This same term α1(
εt−1√
ht−1|t−2

) is included to capture leverage effects

similar to those addressed by the TARCH model.

For example if α1 < 0 then bad news (εt−1 < 0) will increase ht|t−1
through this term.

Chaoyi Chen (BCE & MNB) Extension to ARCH & GARCH model 14 / 15



Exponential GARCH (EGARCH) (Nelson, 1991) Cont.

The magnitude of the news also matters:
∗ It is capttured by λ1| εt−1√

ht−1|t−2
|.

∗ For λ1 > 0, larger values of εt−1| (scaled by
√

ht−1|t−2) will increase

volatility more than smaller values, regardless of whether the news is
good or bad.

∗ This is somewhat analogous to the term ε2t−1 in the standard GARCH
model.

∗ However, now the ”size” of the shock is measured relative to current

volatility (
√

ht−1|t−2).

∗ εt√
ht−1|t−2

= |εt |
standard diviationnt−1(εt )

is unit free.
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