Machine Learning in Econometrics: Lecture 10

Instructor: Chaoyi Chen NJE \& MNB

November 7, 2023
@copyright Chaoyi Chen (NJE \& MNB). All rights reserved. Please do not distribute without express written consent.

Topic 4: Practical Weight Selection

- The theory we have described concerns the infeasible best weights
- They are unknown
- How can they be estimated? feasible approaches
- Plug-in
- Mallows
- CV

Topic 4: Plug-In Approach

- Chu-An Liu, Journal of Econometrics, 2015 (Liu 2015)
- Recall

$$
\begin{aligned}
& \text { wmse }(\widehat{B}(\mathrm{w}))=\mathrm{w}^{\top} \bar{M} \mathrm{w} \\
& \bar{M}=\left[B^{\top}\left(X^{\top} A_{m}^{\top}-I\right) W\left(A_{l} X-I\right) B+\operatorname{tr}\left(A_{m} D A_{l}^{\top} W\right)\right]_{m l} \\
& A_{m}=\left[\begin{array}{c}
\left(X_{m}^{\top} X_{m}\right)^{-1} X_{m}^{\top} \\
0
\end{array}\right]
\end{aligned}
$$

- Estimator

$$
\begin{aligned}
& \widehat{B}=\left(X^{\top} X\right)^{-1} X^{\top} y \\
& \widehat{M}=\left[\widehat{B}^{\top}\left(X^{\top} A_{m}^{\top}-I\right) W\left(A_{\ell} X-I\right) \widehat{B}+\operatorname{tr}\left(A_{m} \widehat{D} A_{l}^{\top} W\right)\right]_{m \ell} \\
& \widehat{D}=\operatorname{diag}\left(\widehat{e}_{1}^{2}, \ldots, \widehat{e}_{n}^{2}\right)
\end{aligned}
$$

Topic 4: Plug-in Approach

- $\widehat{M}=\left[\widehat{B}^{\top}\left(X^{\top} A_{m}^{\top}-I\right) W\left(A_{l} X-I\right) \widehat{B}+\operatorname{tr}\left(A_{m} \widehat{D} A_{l}^{\top} W\right)\right]_{m l}$
- $\widehat{\mathrm{wmse}}(\widehat{B}(\mathrm{w}))=\mathrm{w}^{\top} \widehat{W} \mathrm{~W}$
- $\widehat{\mathrm{w}}=\underset{\mathrm{w}}{\operatorname{argmin}} \mathrm{w}^{\top} \widehat{W} \mathrm{~W}$ s.t. $\sum_{m=1}^{M} \mathrm{w}_{m}=1$ and $0 \leq \mathrm{w} \leq 1$
- Quadratic programming solution

Topic 4: Comments on Plug-In Approach

- Simple, computationally quick
- Works for any weight matrix W
- If W is rank one (puts rank on a single linear combination)
- This reduces to a Focused Information Criterion
- Hjort and Claeskens introduced this as Frequentist Model Averaging (FMA) estimator(Hjort and Claeskens 2003)
- Disadvantages
- \widehat{M} is anbiased estimator for \bar{M}
- This is because when the estimated squared bias is of the same order as the variance, then the variance of the estimated bias term is of the same order
- This bias can be corrected, but we do not pursue this here

Topic 4: Mallows Model Averaging (MMA) Criterion

- Hansen proposed the least square model averaging with Mallow criterion (Hansen 2007)
- The Mallows criterion applies to regression models with linear estimators
- Recall $m^{t h}$ regression uses a subset \mathbf{X}_{m} of regressors

$$
\begin{aligned}
& \mathbf{y}=\widehat{\mathbf{m}}_{m}+\widehat{\mathbf{e}}_{m}=\mathbf{X}_{m} \widehat{\mathbf{B}}_{m}+\widehat{\mathbf{e}}_{m} \\
& \widehat{\mathbf{B}}_{m}=\left(\mathbf{X}_{m}^{\top} \mathbf{X}_{m}\right)^{-1} \mathbf{X}_{m}^{\top} \mathbf{y} \\
& \widehat{\mathbf{m}}_{m}=\mathbf{X}_{m}\left(\mathbf{X}_{m}^{\top} \mathbf{X}_{m}\right)^{-1} \mathbf{X}_{m}^{\top} \mathbf{y}=\mathbf{P}_{m} \mathbf{y}
\end{aligned}
$$

- Therefore we have

$$
\begin{aligned}
& \widehat{\mathbf{m}}(\mathrm{w})=\sum_{m=1}^{M} \mathrm{w}_{m} \widehat{\mathbf{m}}_{m}=\sum_{m=1}^{M} \mathrm{w}_{m} \mathbf{P}_{m} \mathbf{y}=\mathbf{P}(\mathrm{w}) \mathbf{y} \\
& \mathbf{P}(\mathrm{w})=\sum^{M} \mathrm{w}_{m} \mathbf{P}_{m} \text { is a weighted average of projection matrice }
\end{aligned}
$$

Topic 4: Mallows Criterion

- $C=\widehat{\mathbf{e}}^{\top} \widehat{\mathbf{e}}+2 \tilde{\sigma}^{2} \operatorname{tr}(\mathcal{A})$
- For least square averaging estimator
- $\mathcal{A}=\mathbf{P}(\mathrm{w})$
- $\operatorname{tr}(\mathcal{A})=\operatorname{tr}(\mathbf{P}(\mathrm{w}))=\sum_{m=1}^{M} \mathrm{w}_{m} \operatorname{tr}\left(\mathbf{P}_{m}\right)=\sum_{m=1}^{M} \mathrm{w}_{m} K_{m}$
- K_{m} is number of estimated coefficients in model m.
- $C(\mathrm{w})=\widehat{\mathbf{e}}(\mathrm{w})^{\top} \widehat{\mathbf{e}}(\mathrm{w})+2 \tilde{\sigma}^{2} \sum_{m=1}^{M} \mathrm{w}_{m} K_{m}$
- The penalty is the weighted average of the number of coefficients

Topic 4: Computation

- Stack the residual vectors by column

$$
\begin{aligned}
& \widehat{\mathbf{E}}=\left[\widehat{\mathbf{e}}_{1}, \ldots, \widehat{\mathbf{e}}_{M}\right] \\
& \widehat{\mathbf{e}}(\mathrm{w})=\widehat{\mathbf{E}} \mathrm{w} \\
& \widehat{\mathbf{e}}(\mathrm{w})^{\top} \widehat{\mathbf{e}}(\mathrm{w})=\mathrm{w}^{\top} \widehat{\mathbf{E}}^{\top} \widehat{\mathbf{E}}_{\mathrm{w}}
\end{aligned}
$$

- Stack the K_{m}

$$
\begin{aligned}
& \mathbf{K}=\left(K_{1}, \ldots, K_{M}\right)^{\top} \\
& \sum_{m=1}^{M} \mathrm{w}_{m} K_{m}=\mathrm{w}^{\top} \mathbf{K}
\end{aligned}
$$

- $C(\mathrm{w})=\widehat{\mathbf{e}}(\mathrm{w})^{\top} \widehat{\mathbf{e}}(\mathrm{w})+2 \tilde{\sigma}^{2} \sum_{m=1}^{M} \mathrm{w}_{m} K_{m}=\mathrm{w}^{\top} \widehat{\mathbf{E}}^{\top} \widehat{\mathbf{E}}_{\mathrm{w}}+2 \tilde{\sigma}^{2} \mathrm{w}^{\top} \mathbf{K}$

Topic 4: Mallow selection

- $C(\mathrm{w})=\mathrm{w}^{\top} \widehat{\mathbf{E}}^{\top} \widehat{\mathbf{E}} \mathrm{w}+2 \tilde{\sigma}^{2} \mathrm{w}^{\top} \mathbf{K}$ is a quadratic c function in weight vector w
- Mallows selection
- $\widehat{\mathrm{w}}=\underset{\mathrm{w}}{\operatorname{argmin}} C(\mathrm{w})$ s.t. $\sum_{m=1}^{M} \mathrm{w}_{m}=1$ and $0 \leq \mathrm{w} \leq 1$
- Quadratic Programming solution
- You can use quadprog in R
- Given selected weights \widehat{w}
- $\widehat{\mathbf{B}}=\widehat{\mathbf{B}}(\widehat{\mathrm{w}})=\sum_{m=1}^{M} \widehat{\mathrm{w}}_{m}\left[\begin{array}{c}\widehat{\mathbf{B}_{m}} \\ 0\end{array}\right]$
- Weighted average of least squares estimates using selected weights
- Generalization of model selection, where $\widehat{w}_{m}=\{0,1\}$
- The quadratic programming solution is quick and reliable even with hundreds of models
- Mallows criterion is unbiased for regression fit (Mallows Theorem)

Topic 4: Computation in R

- You need the quadprog package installed on the computer
- library (quadprog)
- quadprog solves the minimizes functions of the form $-d^{\top} b+(1 / 2) b^{\top} D b$ s.t. $A^{\top} b \geq b_{0}$ and equality constraint
- In our notation
- $b=\mathrm{w}$
- $d=-\tilde{\sigma}^{2} \mathbf{K}$
- $D=\hat{\mathbf{E}}^{\top} \widehat{\mathbf{E}}$
- $M=\#$ of models
- Command
- QP <- solve.QP(Dmat,dvec,Amat, bvec,1)
- Dmat <- $\mathrm{t}(\mathrm{e}) \% * \% \mathrm{e}$ where $\mathrm{e}=n \times M \mathrm{M}$ matrix of residuals from M models
- dvec <- K*sig2 $M \times 11$ vector of number of regression parameters in each model
- The " 1 " says that the first constraint is an equality, the remainder inequality

Topic 4: Impose Contraints

- The technical issue is to construct Amat and bvec to impose constraints of the form $A^{\top} b \geq b_{0}$
- The first constraint is that the sum of the weights to 1
- The second set of constraints is that the weights are greater than zero
- The third set of constraints is that the weights are less than one
- Amat<-t(rbind(matrix(1, nrow=1,ncol=M), diag(M),-diag(M)))
bvec<-rbind(1, matrix (0 , nrow=M, ncol=1), matrix (-1, nrow $=\mathrm{M}, \mathrm{ncol}=1$))
- QP <- solve.QP(Dmat,dvec,Amat,bvec,1)
- w <- QP\$solution

Topic 4: Jackknife Model Averaging (JMA) Criterion

- Hansen and Racine 2012 Journal of Econometrics (Hansen and Racine 2012)
- The Mallows criterion applies to regression models
- Now, we also allow for the Heteroskedasticity
- Averaging estimator of conditional mean at $i^{\text {th }}$ observation

$$
\widehat{m}_{i}(\mathrm{w})=\sum_{m=1}^{M} \mathrm{w}_{m} \mathbf{x}_{m i}^{\top} \widehat{\mathbf{B}}_{m}
$$

- The leave one out estimator is

$$
\tilde{m}_{i}(\mathrm{w})=\sum_{m=1}^{M} \mathrm{w}_{m} \mathbf{x}_{m i}^{\top} \widehat{\mathbf{B}}_{(-i) m}
$$

- Prediction error

$$
\tilde{e}_{i}(\mathrm{w})=y_{i}-\tilde{m}_{i}(\mathrm{w})
$$

Topic 4: CV/JMA criterion

- $\tilde{e}_{i}(\mathrm{w})=y_{i}-\tilde{m}_{i}(\mathrm{w})=y_{i}-\sum_{m=1}^{M} \mathrm{~W}_{m} \mathbf{x}_{m i}^{\top} \widehat{\mathbf{B}}_{(-i) m}$
- $\operatorname{CV}(w)=\tilde{\mathbf{e}}(w)^{\top} \tilde{\mathbf{e}}(w)$
- JMA select
- $\widehat{\mathrm{w}}=\underset{\mathrm{w}}{\operatorname{argmin}} \mathrm{CV}(\mathrm{w})$ s.t. $\sum_{m=1}^{M} \mathrm{w}_{m}=1$ and $0 \leq \mathrm{w} \leq 1$
- Properties are similar to Mallows select
- Asymptotic optimality holds under conditional heteroskedasticity

Topic 4: JMA Computation

- Stack the prediction error vectors by column
- $\tilde{\mathbf{e}}_{m}=\left(\tilde{e}_{1, m}, \ldots, \tilde{e}_{1, M}\right)$
- $\tilde{\mathbf{E}}=\left[\tilde{\mathbf{e}}_{1}, \ldots, \tilde{\mathbf{e}}_{M}\right]$
- $\tilde{\mathbf{e}}(\mathrm{w})=\tilde{\mathbf{E}}_{\mathrm{E}} \mathbf{w}$
- $\tilde{\mathbf{e}}(w)^{\top} \tilde{\mathbf{e}}(w)=w^{\top} \tilde{\mathbf{E}}^{\top} \tilde{\mathbf{E}} w$
- $\operatorname{CV}(W)=W^{\top} \tilde{\mathbf{E}}^{\top} \tilde{E} w$
- Quadratic function in weight vector w
- Minimization is a Quadratic Programming solution
- Numerically as simple as Mallows criterion

Topic 4: quadprog

- In our notation
- $b=\mathrm{w}$
- $d=0$
- $D=\widehat{\mathbf{E}}^{\top} \widehat{\mathbf{E}}$
- $M=\#$ of models
- Command
- QP <- solve.QP(Dmat,matrix(0,M,1),Amat,bvec,1)
- Dmat <- $\mathrm{t}(\mathrm{pe}) \% * \%$ pe where $\mathrm{pe}=n \times M \mathrm{M}$ matrix of prediction errors from M models
- Same constraints as for Mallows criterion inequality

Topic 4: Simulation Evidence

- MMA and JMA perform better than selection methods
- MMA and JMA perform better than AIC and BIC
- JMA performs better than MMA, especially under heteroskedasticity
- Improvement is not uniform in parameter space

Reference

苌国sen，Bruce E．（2007）．Least squares model averaging．Econometrica 75（4），1175－1189．
固hsen，Bruce E．and Jeffrey S．Racine（2012）．Jackknife model averaging．Journal of Econometrics 167（1），38－46．
Hijprt，Nils Lid and Gerda Claeskens（2003）．Frequentist model average estimators．Journal of the American Statistical Association 98（464），879－899．
L圊，Chu－An（2015）．Distribution theory of the least squares averaging estimator．Journal of Econometrics 186（1），142－159．

