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Topic 4: An empirical example for the dynamic panel
regression

Recall, we use the following model as an example before

∆Git = β0 + β1∆Cit + β2∆Kit + β3∆Pit + αi + ε it .

∆Git is the economic growth rate

∆Cit is the consumption growth rate

∆Kit is the investment growth rate

∆Pit is the population growth rate

Since the output level is essentially persistent, we may expect the
empirical growth model should allow this dynamic process. Therefore,
we extend above static panel model to the augmented dynamic panel
AR(1) panel:

∆Git = β0 + γ∆Git−1 + β1∆Cit + β2∆Kit + β3∆Pit + αi + ε it .
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A Stata example: Fixed effect estimation without IV

xtreg lrgdpnagrowth l.lrgdpnagrowth lccongrowth lckgrowth

lpopgrowth, fe
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A Stata example: Anderson and Hsiao (1982) IV approach

xtivreg lrgdpnagrowth (l.lrgdpnagrowth=l2.lrgdpnagrowth)

lccongrowth lckgrowth lpopgrowth, fe
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Topic 4: The GMM approach

As we mentioned in last lecture, we can use IV and GMM approach to
deal with the endogeneity.

We have studied the endogenous problem and how to use IV
approach to deal with it.

In this lecture, we will review/study the GMM approach. To begin,
we first review the GMM estimation in the classical linear regression
model. Then, we will extend to the dynamic panel model!
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Review: Moment condition for linear regression models

Consider the classical linear regression model with exogenous
regressors as studied in Lecture 1:

y = xβ + µ.

Therefore, the following k × 1 moment condition holds

E (xiµt) = E (xi (yi − x⊤i β)) = 0.

Note that the above equations form a set of what we may call
theoretical moment. Each theoretical moment condition corresponds
to a sample moment, or empirical moment, of the form conditions

gn(β) =
1

n

n

∑
i=1

xi (yi − x⊤i β).
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Review: The general setup of the MM and GMM

Before, we only assume and use the moment condition
E (xiµt) = E (xi (yi − x⊤i β)) = 0. In fact, this can be greatly relaxed.
Now, suppose economic theory or common sense provide a set of m
moment conditions and m ≥ k : E (gi (β)) = 0m×1.
Let gn(β) be the sample analogue of E (gi (β)).

Example: By using a valid set of instruments zi , we can construct
m× 1 moment condition where gi (β) = zi (yi − x⊤i β) and the sample
analogue is gn(β) = 1

n ∑n
i=1(zi (yi − x⊤i β)).

MM (Method of Moments): The MM estimator solves the following
m equations

gn(β̂
MM

) = 0.

GMM (Generalized Method of Moments): Given a m×m weighting
matrix W , the GMM estimator solves the optimization problem

β̂
GMM

= arg min
β∈Θβ

Qn(β)GMM = arg min
β∈Θβ

gn(β)⊤Wgn(β).
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Review: MM estimator for classic linear regression model

Consider we use E (xiµi ) = 0. The sample counterpart equations are

1

n

n

∑
i=1

xi (yi − x⊤i β)

Therefore, MM estimator gives

1

n

n

∑
i=1

xi (yi − x⊤i β) = 0

=⇒ β̂
MM

= (
n

∑
i=1

xix
⊤
i )−1(

n

∑
i=1

xiyi )

Remark: The OLS estimator is a MM estimator.
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Review: GMM estimator for classic linear regression model

Again, consider we use E (xiµi ) = 0. The GMM estimator solves

min
β∈Θβ

Qn(β)GMM = gn(β)⊤Wgn(β)

=

(
1

n
x⊤(y − xβ)

)⊤
W

(
1

n
x⊤(y − xβ)

)
.

The FOC gives

x⊤xW x⊤(y − x β̂
GMM

) = 0

=⇒ β̂
GMM

=
(
x⊤xW x⊤x

)−1
x⊤xW x⊤y .

Remark: If W = Im×m, β̂
GMM

= (x⊤x)−1x⊤y . The GMM estimator
becomes OLS estimator.

At home: Try to solve the GMM estimator with moment condition
E (ziµi ) = 0.

Instructor: Chaoyi (NJE & MNB) Panel Data May 9, 2023 9 / 18



Review: Asymptotic results for GMM estimator

Theorem: Under some regularity conditions (Newey and
Mcfadden 1994), we can show

√
n
(

β̂
GMM − β0

)
d−→ N

(
0, (G⊤WG )−1G⊤WΩWG (G⊤WG )−1

)
,

G = G (β0), G (β) = ∂E [g (β)]
∂β , and Ω = E

[
g(β)g(β)⊤

]
Proof.

Let Gn(β) be the derivative of gn(β). By applying the Lagrange mean value
theorem, the FOC gives

∂Qn(β)GMM

∂β
= 2Gn(β̂

GMM
)⊤W

[
gn(β0) + Gn(β̄)

(
β̂
GMM − β0

)]
= 0

=⇒
√
n
(

β̂
GMM − β0

)
= −

[
Gn(β̂

GMM
)⊤WGn(β̄)

]−1
Gn(β̂

GMM
)⊤W

√
ngn(β0)

= −
[
G⊤WG

]−1
G⊤W

√
ngn(β0) + op(1).

Then assuming i.i.d. and applying Lindberg-Levy CLT to
√
ngn(β0) yields

√
ngn(β0)

d−→ N(0,Ω), which completes the proof.
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Review: Feasible efficient GMM estimator

The asymptotic result implies that the optimal weighting matrix is
W = Ω−1 and gives the most efficient GMM estimator with

√
n
(

β̂
GMM − β0

)
d−→ N

(
0, (G⊤WG )−1

)
.

Hence, a two-step feasible efficient GMM is proposed as follows:
1 Step 1: Using W = Im×m and obtain a pre-estimator β̂ and compute

Ω̂ =
1

n− 1

n

∑
i=1

g(β̂)g(β̂)⊤.

2 Step 2: Using W = Ω̂ and obtain β̂
GMM

.
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Review: Remarks on two-step GMM

Remark 1: Empirical results show that the bias of the above feasible
efficient GMM estimator is significant when the sample size is small,
see the special issue of the Journal of Business and Economic
Statistics 1996.

Remark 2: This problem can be alleviated by the continuous-updating
GMM estimator proposed by Hansen, Heaton, and Yaron (Hansen et
al. 1996). The intuition is simple: Repeat the above two-steps for
many more times.
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Topic 4: GMM approach to dynamic panel data models

Now, we turn back to a dynamic panel AR(1) model.

yit = γyi ,t−1 + αi + ε it .

Various GMM estimators (i.e. moment conditions) have been
proposed for dynamic panel data models

1 Arellano and Bond (1991): GMM estimator
2 Arellano and Bover (1995): GMM estimator
3 Ahn and Schmidt (1995): GMM estimator
4 Blundell and Bond (1998): a system GMM estimator

Key insights: They propose to use different moment conditions.
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Topic 4: Arellano and Bond (1991) estimator

Consider the first-difference dynamic panel AR(1) model

∆yit = γ∆yi ,t−1 + ∆ε it .

Arellano and Bond (1991) propose to use the following moment
conditions

E [∆ε ityit−j ] = 0,

For j = 2, . . . , (t − 1). t = 3, . . . ,T .

Therefore, (Arellano and Bond 1991) have m = (T − 2)(T − 1)/2
linear moment restrictions.

Instructor: Chaoyi (NJE & MNB) Panel Data May 9, 2023 14 / 18



Topic 4: Arellano and Bover (1995) estimator

The first-difference transform has a weakness. It magnifies gaps in
unbalanced panels - If If some yit is missing, for example, then both
∆yit and ∆yit+1 are missing.

This motivates the second common transformation, called “forward
orthogonal deviations” or “orthogonal deviations” (Arellano and
Bover 1995).

Intuition of forward orthogonal deviations: subtracting the average of
all future available observations of a variable.

A set of moment conditions can be constructed by using the forward
transformed data.
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Topic 4: Ahn and Schmidt (1995) estimator

Consider again the first-difference dynamic panel AR(1) model

yit = γyi ,t−1 + uit ,

uit = αi + ε it .

Under regular assumptions, (Ahn and Schmidt 1995) find the
following holds:

For all i , εit is uncorrelated with yi0 for all t.
For all i , εit is uncorrelated with αi for all t
For all i , εit are nutually uncoorelated.

Hence, besides the previous ones, they propose the following moment
condition holds:

1 E (yit∆uit+1 − yit+1)∆uit+2) = 0 for t = 1, . . . ,T − 2.
2 E (ūi∆uit+1) = 0 for t = 1, . . . ,T − 1.
3 E (uiT ∆yit) = 0 for all t = 1, . . . ,T − 1.
4 E (uityit − uit−1yit−1) = 0 for all t = 2, . . . ,T .
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Topic 4: Blundell and Bond (1998) system GMM estimator

As underscored in (Blundell and Bond 1998), Arellano and Bond
instruments may be weak if the dynamic process is persistent. For
example, if T = 3, the model we considered at t = 2 becomes

yi2 = γyi1 + αi + ε i2.

By deducting both sides by yi1, we have

∆yi2 = (β − 1)yi1 + αi + ε i2.

Key observation: As β −→ 1, the correlation between ∆yi2 and yi1
decreases. Arellano and Bond istruments are weak in this sense.

To solve the weak instrument problem, Blundell and Bond (1998)
propose to add the following additional moment conditions

E [∆yit−1(αi + ε it)] = 0
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