Empirical Panel Data: Lecture 11

INSTRUCTOR: CHAOYI CHEN NJE & MNB

May 16, 2023

@copyright Chaoyi Chen (NJE & MNB). All rights reserved. Please do not distribute without express written consent.

Topic 4: An empirical example for the dynamic panel regression

 Recall, we consider the following augmented dynamic panel AR(1) panel as an example before

 $\Delta G_{it} = \beta_0 + \gamma \Delta G_{it-1} + \beta_1 \Delta C_{it} + \beta_2 \Delta K_{it} + \beta_3 \Delta P_{it} + \alpha_i + \varepsilon_{it}.$

- ΔG_{it} is the economic growth rate
- ΔC_{it} is the consumption growth rate
- ΔK_{it} is the investment growth rate
- ΔP_{it} is the population growth rate

Topic 4: Stata command for first-differenced GMM and system GMM

- To perform the Arellano and Bond GMM estimation, xtabond2 depvar varlist [if] [in] [weight], [, level() twostep robust cluster nonconstant small nolevel] ivstyle() gmmstyle()
- To perform the system GMM estimation, xtabond2 depvar varlist [if] [in] [weight], [, level() twostep robust cluster nonconstant small nolevel] ivstyle() gmmstyle()

• • = • • = •

A Stata example: Arellano and Bond estimator

• xtabond2 lrgdpnagrowth L.lrgdpnagrowth lccongrowth lckgrowth lpopgrowth, gmm(L.lrgdpnagrowth) nolevel robust small

Group variable: d	country1			Number o	f obs =	8870
Time variable : y	year			Number o	f groups =	180
Number of instru	ments = 1953			Obs per	group: min =	22
F(0, 180) =					avg =	49.28
Prob > F =	÷				max =	62
		Robust				
lrgdpna_growth	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lrgdpna_growth	0.500000	10000		11212101041		
L1.	.1453177	.0252345	5.76	0.000	.0955243	.1951111
lccon_growth	.3965805	.0488324	8.12	0.000	.3002229	.4929382
lck growth	.0031694	.0358864	0.09	0.930	0676428	.0739817
lpop growth	.6539932	.213688	3.06	0.003	.2323375	1.075649

Dynamic panel-data estimation, one-step difference GMM

Instruments for first differences equation

GMM-type (missing=0, separate instruments for each period unless collapsed) $L(1/64).L.lrgdpna_growth$

Arellano-Bond test for AR(1) in first differences: z = -6.53 Pr > z = 0.000Arellano-Bond test for AR(2) in first differences: z = -0.17 Pr > z = 0.867

Sargan test of overid. restrictions: chi2(1949) =2690.42 Prob > chi2 = 0.000
(Not robust, but not weakened by many instruments.)

A Stata example: Blundell and Bond system GMM estimator

• xtabond2 lrgdpnagrowth L.lrgdpnagrowth lccongrowth lckgrowth lpopgrowth, gmmstyle(L.lrgdpnagrowth) robust small

Group variable: o	country1			Number o	f obs =	9050
Time variable : y	year			Number o	f groups =	180
Number of instru	nents = 2016			Obs per	group: min =	23
F(4, 179) =	1004.17				avg =	50.28
Prob > F =	0.000				max =	63
		Robust				
lrgdpna_growth	Coef.	Std. Err.	t	P> t	[95% Conf.	[Interval]
lrgdpna_growth						
L1.	.155933	.0251676	6.20	0.000	.1062696	.2055965
lccon_growth	.4244219	.0459817	9.23	0.000	.333686	.5151578
lck growth	.017377	.0365581	0.48	0.635	0547632	.0895172
lpop growth	.4232537	.1152593	3.67	0.000	.1958119	.6506956
cons	.5818639	.2837831	2.05	0.042	.0218732	1.141855

Dynamic panel-data estimation, one-step system GMM

```
Instruments for first differences equation
```

GMM-type (missing=0, separate instruments for each period unless collapsed)

L(1/64).L.lrgdpna growth

Instruments for levels equation

Standard

Instructor: Chaoyi (NJE & MNB)

May 16, 2023 5 / 19

• Considering the following AR(1) model

$$y_t = \gamma y_{t-1} + \varepsilon_t, \ \varepsilon \sim WN(0, \sigma^2).$$

- If |γ| = 1, yt is a unit root. One can apply ADF (Augmented Dicky-Fuller) test to test the unit root.
- However, for the dynamic panel AR(1) model

$$y_{it} = \gamma y_{i,t-1} + \alpha_i + \varepsilon_{it}.$$

- We wish to test if $\gamma = 1$.
- However, it is well established that the ADF test shows a significantly low power.
- Need to develop panel unit root test!

Topic 5: First-generation panel unit root test

- Earlier studies on panel unit root tests assume cross-sectional independence. That is ε_{it} is independent across *i*.
- Among the all first-generation panel Unit root tests in the literature, we will focus on following two testings:
 - LLC test (Levin et al. 2002)
 - IPS test (Im et al. 2003)
- Consider the hetetrogeneous dynamic panel model

$$y_{it} = \gamma_i y_{it-1} + \alpha_i + \varepsilon_{it}.$$

• Subtracting both sides by y_{it-1} yields

$$\Delta y_{it} = \delta_i y_{it-1} + \alpha_i + \varepsilon_{it}, \ \delta_i = (\gamma - 1).$$

- LLC and IPS tests examine $H_0: \delta_i = 0$ for all *i* against $H_a: \delta_i \leq 0$.
- However, they differ in whether the alternative holds for all *i*.

Topic 5: LLC test

• LLC focus on the following generalized equation:

$$\Delta y_{it} = \delta y_{it-1} + \alpha_i + \sum_{j=1}^{p_i} \rho_{ij} \Delta y_{i,t-j} + \theta_t + \beta_i t + \varepsilon_{it}$$

- Remark 1: LLC assumes all $\delta_i = \delta$ for all *i*.
- Remark 2: LLC assumes the errors are independently distributed across panels.
- Remark 3: Similar to ADF test, LLC propose different specifications, allowing additional lags of dependent variables and the time trend.
- LLC propose the following hypothesis testing:

$$H_0: \ \delta = 0$$
$$H_a: \ \delta < 0$$

Topic 5: LLC test in practice

- LLC propose using a two-steps to contruct the test statistic (w.l.o.g. we assume no time trend and no time fixed effects):
 - Step 1: conduct the first-stage regression and generate orthogalized residuals

1).
$$\Delta y_{it} = \alpha_i + \sum_{j=1}^{p_i} \rho_{ij} \Delta y_{i,t-j} + e_{it}, 2$$
).
$$y_{it} = \gamma_i + \sum_{j=1}^{p_i} \phi_{ij} \Delta y_{i,t-j} + v_{it}.$$

Then standardize the residuals: $\tilde{e}_{it} = \frac{e_{it}}{\hat{\sigma}_{\varepsilon_i}}$, $\tilde{v}_{it} = \frac{v_{it}}{\hat{\sigma}_{\varepsilon_i}}$.

Step 2: Using the normalized residuals to run the pooled ADF regression

$$\tilde{e}_{it} = \beta \tilde{v}_{it-1} + w_{it}.$$

- Therefore, testing the null hypothesis is the same as testing if $\beta = 0$.
- However, the studentized coefficient $\tau = \hat{\beta} \frac{\sum_{i=1}^{n} \sum_{t=1}^{T} \tilde{v}_{it-1}}{\hat{\sigma}_{w}^{2}}$ is not asymptotically standard normal. LLC propose to use a complicated adjustment to the standard t-test. (see (Levin *et al.* 2002) for more reference)

Instructor: Chaoyi (NJE & MNB)

• IPS focus on the following generalized equation:

$$\Delta y_{it} = \delta_i y_{it-1} + \alpha_i + \sum_{j=1}^{p_i} \rho_{ij} \Delta y_{i,t-j} + \theta_t + \beta_i t + \varepsilon_{it}.$$

• IPS focus on the following hypothesis testing:

 $H_0: \delta_i = 0$ for all i, $H_a: \delta_i < 0$, for $i = 1, 2, ..., n_1$, $\delta_i = 0$, for $i = n_1 + 1, ..., n$.

- Remark 1: IPS relaxes the assumption of common δ .
- Remark 2: In fact, the IPS test allows for some fraction (n₁) of the individual series to have unit roots.
- Remark 2: IPS assumes the errors are independently dtrsibuted across panels.

Topic 5: IPS test in practice

- IPS test is based on a combination of the individual unit root tests for the N crosss ectional units.
- Given each *i*, the model inherently becomes a time-series model thus one can apply ADF test and obatin the *t* statistic, *t_i*, for *i* = 1,..., *n*.
- For $E[t_i] = \mu$ and $var(t_i) = \sigma^2$, IPS propose using the following test statistic:

$$\bar{t}=\frac{1}{n}\sum_{j=1}^{n}t_{j}.$$

• Under some regularity assumptions, IPS show

$$\sqrt{n} \frac{\overline{t} - \mu}{\sigma} \stackrel{d}{\longrightarrow} N(0, 1).$$

IPS compute µ and σ² by Monte Carlo simulations and report critical values for various values of n and T.

Instructor: Chaoyi (NJE & MNB)

- Many panel data are cross-sectionally dependent. However, all first-generation tests do not allow for this dependent structure.
- A number of panel unit root tests are developed that allow for cross-section dependence. These tests are called "second-generation" panel unit root test.
- Among the all second-generation panel unit root tests in the literature, we will introduce the CIPS test proposed by (Pesaran 2007).

Topic 5: CADF regression

• Pesaran considers the following dynamic panel model with cross-sectional dependence:

$$y_{it} = \gamma_i y_{it-1} + (1 - \gamma_i) a_i + u_{it},$$

$$u_{it} = \phi_i f_t + \varepsilon_{it}.$$

• Therefore, we can rewrite the above model as an ADF type equation

$$\Delta y_{it} = eta_i y_{it-1} + lpha_i + \phi_i f_t + arepsilon_{it}$$
, where $lpha_i = (1 - \gamma_i) a_i$.

• Assuming $\bar{\phi} = n^{-1} \sum_{i=1}^{n} \phi_i \neq 0$, we can write the cross-sectional mean of y_{it} as

$$\bar{y}_t = \bar{y}_{t-1} + \bar{\phi}f_t + 0.$$

• Thus, Pesaran bases his test on the t-ratio of the OLS estimate *b_i* in the "Cross Sectional Augmented Dickey Fuller" (CADF) regression,

$$\Delta y_{it} = a_i + b_i y_{it-1} + c_i \bar{y}_{t-1} + d_i \Delta \bar{y}_t + e_{it}$$

Topic 5: CIPS test

- The exact null distribution of the t-ratio, t_i(n, T) will depend on nuisance parameters (although not asymptotically), and Pesaran conducts simulations to derive the critical values.
- By using each t-ratio obtained from the CADF regression, Pesaran considers the following cross-sectionally augmented version of the IPS test,

$$CIPS(n, T) = \frac{1}{n} \sum_{i=1}^{T} t_i(n, T)$$

- t_i(n, T) is the CADF statistic for the ith cross-section unit given by the t-ratio of the coefficient on y_{it-1} in the CADF regression.
- Pesaran also considers an average of the truncated version of the CADF to help deal with the problems created by a lack of independence of the individual CADF statistics. (see more reference on section 4 of (Pesaran 2007)).

- To perform the LLC test, xtunitroot llc varname [if] [in], [, LLC options]
- LLC options: trend, noconstant, demean, lags, kernel
- To perform the IPS test, xtunitroot ips varname [if] [in], [, IPS options]
- IPS options: trend, demean, lags.
- To perform the CIPS test, xtcips varname [, CIPS options]
- CIPS options: maxlags, bglags, trend, noc

Topic 5: LLC test Stata example

	xtunitroot	llc	log	GDP,	lags(1)	trend
--	------------	-----	-----	------	---------	-------

Levin-Lin-Chu unit-root test for log GDP

Ho: Panels contain unit roots	Number of panels =
Ha: Panels are stationary	Number of periods =
AR parameter: Common	Asymptotics: N/T ->

Panel means: Included Time trend: Included

ADE	regressions:	1	lag								
LR	variance:	Ba	artlett	kernel.	8.00	lags	average	(chosen	bv	LLC)	

	Statistic	p-value	
Unadjusted t	-20.7734		
Adjusted t*	-8.2236	0.0000	

97 21

0

Instructor: Chaoyi (NJE & MNB)	Panel Data	May 16, 2023 16 / 19
--------------------------------	------------	----------------------

Topic 5: IPS test Stata example

. xtunitroot ips log GDP, lags(1) trend

Im-Pesaran-Shin unit-root test for log GDP

Ho: All panels contain unit roots Ha: Some panels are stationary Number of panels = 97 Number of periods = 21

AR parameter: Panel-specific Panel means: Included Time trend: Included Asymptotics: T,N -> Infinity sequentially

イロト イポト イモト イモト 二日

500

ADF regressions: 1 lags

	Statistic	p-value	
W-t-bar	-0.3485	0.3637	

			2.46
Instructor: Chaoyi (NJE & MNB)	Panel Data	May 16, 2023	17 / 19

. xtcips log GDP, max1(1) bglags(2) trend

Pesaran Panel Unit Root Test with cross-sectional and first difference mean included for log_GDP Deterministics chosen: constant & trend

Dynamics: lags criterion decision General to Particular based on F joint test

H0 (homogeneous non-stationary): bi = 0 for all i

CIPS = -1.593 N,T = (97,21)

	10%	5%	1%
Critical values at	-2.51	-2.56	-2. <mark>6</mark> 6

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

- Im, Kyung So, M.Hashem Pesaran and Yongcheol Shin (2003). Testing for unit roots in heterogeneous panels. *Journal of Econometrics* 115(1), 53–74.
- Levin, Andrew, Chien-Fu Lin and Chia-Shang James Chu (2002). Unit root tests in panel data: Asymptotic and finite-sample properties. *Journal* of Econometrics 108(1), 1–24.
- Pesaran, M. Hashem (2007). A simple panel unit root test in the presence of cross-section dependence. *Journal of Applied Econometrics* 22(2), 265–312.