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Lecture outline

Last lecture, we studies the variance of the OLS estimators. Today, we will

Estimate the error variance

Efficiency of the OLS estimator - The Gauss- Markov Theorem

Summary: MLR, estimation

Statistical inference in regression model

Normality assumptions

t distribution for stabdardized estimators
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MLR: Estimating the Error Variance

The unbiased estimator of σ2 is

σ̂2 =
1

n− k − 1

n

∑
i=1

µ̂2
i =

SSR

n− k − 1
,

where

n-k-1=n-(k+1)
=(number of observations)-(number of estimated parameters)

is called the degree of freedom (df).

why k + 1 degree of freedom? Cause we have k + 1 FOCs. Given one knows
n− (k + 1) of µ̂2

i , the rest of k + 1 residuals can be computed based on the FOCs.

Typically, in the SLR, k = 1. That is why σ̂2 = 1
n−2 ∑n

i=1 µ̂2
i .

Theorem (Unbiased Estimation of σ̂2): Under assumptions MLR.1-MLR.5,

E [σ̂2] = σ2
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MLR: Estimation of the Sampling Variances of the OLS
Estimators

The true sampling variation of the estimated βj is

sd(β̂j ) =
√

Var(β̂j ) =

√
σ2

SSTj (1− R2
j )

The estimated sampling variation of the estimated βj , or the standard
error of βj , is

se(β̂j ) =
√

V̂ar(β̂j ) =

√
σ̂2

SSTj (1− R2
j )

Note that these formulas are only valid under assumptions
MLR.1-MLR.5 (in particular, there has to be homoskedasticity).
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MLR: Efficiency of OLS

Under assumptions MLR.1-MLR.5, OLS is unbiased.
However, under these assumptions there may be many other estimators that
are unbiased.
Which one is the unbiased estimator with the smallest variance?
In order to answer this question one usually limits oneself to linear
estimators, i.e., estimators linear in the dependent variable:

β̃j =
n

∑
i=1

wijyi ,

where wij may be an arbitrary function of the sample values of all the explanatory
variables.
Typically, the OLS estimator can be shown to be of this form. For example, in the
SLR,

β̂1 =
∑n

i=1(xi − x̄)yi
∑n

i=1(xi − x̄)2
=

n

∑
i=1

wi1yi

where

wi1 =
xi − x̄

∑n
i=1(xi − x̄)2

=
xi − x̄

SSTx

which is a function of {xi : i = 1, ..., n}
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MLR: The Gauss-Markov Theorem

Theorem (The Gauss-Markov Theorem): Under assumptions
MLR.1-MLR.5, the OLS estimators are the best linear unbiased
estimators (BLUEs) of the regression coefficients, i.e.,

Var(β̂j ) ≤ Var(β̃j )

for all β̃j = ∑n
i=1 wijyi for which E [β̃j ] = βj j = 0, 1, ..., k .

OLS is only the best estimator if MLR.1-MLR.5 hold; if there is
heteroskedasticity for example, there are better estimators (i.e., GLS,
see Chapter 8).

The key assumption for the Gauss-Markov theorem is Assumption
MLR.5 (homoskedasticity).

Due to the Gauss-Markov Theorem, assumptions MLR.1-MLR.5 are
collectively known as the Gauss-Markov assumption.
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MLR, estimation: summary

In this topic, we have introduced the multiple linear regression (MLR)
model. Also, we briefly introduced why we need the MLR, the
motivations

We have learned using OLS method to derive the estimators of MLR
and interpreted the economic meaning with several examples.

We learned a ”Partialling Out” interpretation of multiple regression
(two step estimation), and the FWL theorem

We showed that under four (MLR.1-MLR.4) assumptions, the OLS
estimators are unbiased. (The expected value of the OLS estimator
equals to the true parameter)

We dicussed two special cases, 1. Including Irrelevant Variables in a
Regression Model. 2. Omitted Variable Bias. For the first case, we
found the estimator is still unbiased. However, the OLS estimator of
the second case will be biased.
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MLR, estimation: summary continue

By imposing one more assumption, ”homoskedastic error”, we showed
the simpler expressions of the variance of the OLS estimators.

We found that 1. higher error variance increases the sampling
variance. 2. More sample variation leads to more precise estimates.
3. Sampling variance of β̂j will be the higher the better explanatory
variable xj can be linearly explained by other independent variables.

We showed an unbiased estimator of the σ2

Lastly, we discussed the estimator efficiency. We showed that under
assumptions (MLR.1-MLR.5), the OLS estimator is the best linear
unbiased estimator (The Gauss-Markov theorem).
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MLR: Statistical Inference in the Regression Model

Hypothesis tests about population parameters.

Construction of confidence intervals.
- These two tasks are closely related.

We need to study sampling distributions of the OLS estimators for
statistical inference!

The OLS estimators are random variables.
We already know their expected values and their variances.
However, for hypothesis tests we need to know their distribution.
In order to derive their distribution we need additional assumptions.
Assumption about distribution of errors: normal distribution.
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MLR: Statistical Inference in the Regression Model
(continue)

Assumption MLR.6 (Normality): µi is independent of (xi1, ..., xik),
and µi ∼ N(0, σ2).
- It is stronger than MLR.4 (zero conditional mean) and MLR.5
(homoskedasticity).
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MLR: Discussion of the Normality Assumption

The error term is the sum of ”many” different unobserved factors.

Sums of many independent and similarly distributed factors are
normally distributed (central limit theorem or CLT).

Problems:

How many different factors? Number large enough?
Possibly very heterogeneous distributions of individual factors.
How independent are the different factors?
Are they additive?

The normality of the error term is an empirical question.

In some cases, the error distribution should be ”close” to normal, e.g.,
test scores.

In many other cases, normality is questionable or impossible by
definition.
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MLR: Normal Sampling Distributions

Under normality, OLS is the best (even nonlinear) unbiased estimator, i.e., it
is the minimum variance unbiased estimator.

Terminology:

MLR.1-MLR.5: Gauss-Markov assumptions
MLR.1-MLR.6: classical linear model (CLM) assumptions

Theorem: Under assumptions MLR.1-MLR.6,

β̂j ∼ N(βj , Var(β̂j )).

Therefore,

β̂j − βj

sd(β̂j )
∼ N(0, 1).

The estimators are normally distributed around the true parameters with the
variance that was derived earlier.
- Note that as before, we are conditioning on {xi , i = 1, .., n}.
The standardized estimators follow a standard normal distribution.
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MLR: t-Distribution for Standardized Estimators

Theorem: Under assumptions MLR.1-MLR.6,

β̂j − βj

se(β̂j )
∼ tn−k−1 = tdf .

If the standardization is done using the estimated standard deviation
(= standard error), the normal distribution is replaced by a
t-distribution.

The t-distribution is close to the standard normal distribution if
n− k − 1 is large.

The t-distribution is named after Gosset (1908), The probable error
of a mean which Gosset published under the pseudonym Student.
Consequently, this famous distribution is known as the students t
rather than Gossets t! The name t was popularized by R.A. Fisher.
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MLR: t-Distribution

Recall from the lecture 2, we briefly reviewed the t distribution

If Z is standard normal random variable and W be a chi-squared
distributed random variable with k degree of freedom, then, The
student t distribution with k degrees of freedom is the distribution
with random variable T = Z√

W/k

Now, we provide a rough idea why the standardized β̂j using its
standard error following the t distribution.
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MLR: t-Distribution continue

β̂j − βj

se(β̂j )
=

(β̂j − βj )/sd(β̂j )

se(β̂j )/sd(β̂j )

Note that

se(β̂j ) =

√
σ̂2

SSTj (1− R2
j )

=

√
∑n

i=1 µ̂2
i /(n− k − 1)

SSTj (1− R2
j )

Therefore,

β̂j − βj

se(β̂j )
=

(β̂j − βj )/sd(β̂j )√
∑n

i=1 µ̂2
i /(n−k−1)

SSTj (1−R2
j )

/Var(β̂j )

=
(β̂j − βj )/sd(β̂j )√

∑n
i=1 µ̂2

i /(n−k−1)
SSTj (1−R2

j )
/ σ2

SSTj (1−R2
j )

=
(β̂j − βj )/sd(β̂j )√

∑n
i=1(

µ̂i
σ )

2/(n− k − 1)
∼ N(0, 1)√

χ2
n−k−1/(n− k − 1)

= tn−k−1
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