ECON 3740: INTRODUCTION TO ECONOMETRICS

INSTRUCTOR: CHAOYI CHEN Department of Economics and Finance, University of Guelph

Lecture 17

Instructor: Chaoyi (U. of Guelph)

ECON 3740

Nov 12, 2018 1 / 13

Last lecture, we studied the adjusted R^2 and how to choose models between nested/non-nested models. Today, we will

- Predict y when log(y) is the dependent variable
- Study a single dummy variable
 - Motivation to use dummy incorporate qualitative information
 - Dummy variable Trap
 - Example for using dummy variable

MLR, Further Issue: Adding Regressors to Reduce the Error Variance

Recall that

$$Var(\widehat{eta}_j) = rac{\sigma}{2SST_j(1-R_j^2)}$$

- Adding regressors may exacerbate multicollinearity problems $(R_i^2 \uparrow)$
- On the other hand, adding regressors reduces the error variance $(\sigma^2 \downarrow)$
- Variables that are uncorrelated with other regressors should be added because they reduce error variance (σ² ↓) without increasing multicollinearity (R_i² remains the same).
- However, such uncorrelated variables may be hard to find.
- Example: Individual Beer Consumption and Beer Prices. If we include individual characteristics in a regression of beer consumption on beer prices leads to more precise estimates of the price elasticity if individual characteristics are uncorrelated with beer prices.

$$log(cons) = \beta_0 + \beta_1 log(price) + indchar + \mu$$

MLR, Further Issue: Predicting y When log(y) is the Dependent Variable

• Let's consider a log-level model

$$log(y) = \beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k + \mu$$

which implies

$$y = e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + \mu} = e^{\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k} e^{\mu} = m(\mathbf{x}) e^{\mu}$$

Under the additional assumption that µ is independent of (x₁, ..., x_k), we have

$$E[\mathbf{y}|\mathbf{x}] = e^{\beta_0 + \beta_1 \mathbf{x}_1 + \dots + \beta_k \mathbf{x}_k} E[e^{\mu}|\mathbf{x}] = e^{\beta_0 + \beta_1 \mathbf{x}_1 + \dots + \beta_k \mathbf{x}_k} E[e^{\mu}] = m(\mathbf{x})\alpha_0$$

where the second equality is due to the independence between μ and \mathbf{x} , and $\alpha_0 = E[e^{\mu}]$.

• Hence, the predicted y is

$$\widehat{y} = \widehat{m(\mathbf{x})}\widehat{\alpha}_0 = (e^{\widehat{\beta}_0 + \widehat{\beta}_1 x_1 + \ldots + \widehat{\beta}_k x_k})(\frac{1}{n} \sum_{i=1}^n e^{\widehat{\mu}_i})$$

MLR, Further Issue: Predicting y When log(y) is the Dependent Variable Continue

• Recall that $E(\mu) = 0$, therefore, by Jensens Inequality

$$E[e^{\mu}] \ge e^{E(\mu)} = e^0 = 1$$

• As a result,
$$\tilde{y} = m(\tilde{x}) = e^{\log(\hat{y})}$$
 under estimates $E[y|x]$

MLR, Further Issue: Predicting y When log(y) is the Dependent Variable Continue

- Hence, we can summarize the following steps to predict y when the dependent variable is log(y)
 - 1. Obtain the fitted values, log(y), and residuals, $\hat{\mu}_i$, from the regression log(y) on $x_1, ..., x_k$
 - 2. Obtain $\widehat{\alpha}_0 = \frac{1}{n} \sum_{i=1}^n e^{\widehat{\mu}_i}$
 - 3. Calculate $\hat{y} = \hat{\alpha}_0 \log(y)$

MLR, Further Issue: Comparing *R*-Squared of a Logged and an Unlogged Specification

• R^2 and \tilde{R}^2 are the *R*-squareds for the predictions of the unlogged salary variable (although the second regression is originally for logged salaries). Both *R*-squareds can now be directly compared

• • = • • = •

MLR, Further Issue: Comparing *R*-Squared of a Logged and an Unlogged Specification, \tilde{R}^2

Recall that

$$R^2 = \widehat{Corr}(y, \widehat{y})^2,$$

where \hat{y} is the predicted value of y.

• When log(salary) is the dependent variable, the predicted value of y is $\widehat{m(\mathbf{x})}\widehat{\alpha}_0 = \widehat{\alpha}_0 \widetilde{y}$.

• Since $\widehat{\alpha}_0 > 0$,

$$\widehat{\textit{Corr}}(y,\widehat{y}) = \widehat{\textit{Corr}}(y,\widehat{\alpha}_0 \widetilde{y}) = \widehat{\textit{Corr}}(y,\widehat{y})$$

which is invariant to $\hat{\alpha}_0$. Why? For any a > 0,

$$Corr(X, aY) = \frac{Cov(X, aY)}{\sqrt{Var(X)Var(aY)}} = \frac{aCov(X, Y)}{\sqrt{a^2Var(X)Var(Y)}}$$
$$= \frac{Cov(X, Y)}{\sqrt{Var(X)Var(Y)}} = Corr(X, Y)$$

• Hence, $\tilde{R}^2 = \widehat{Corr}(y, \tilde{y})^2$

MLR, Further Issue: Quantitative and Qualitative Information

- Quantitative Variables: hourly wage, years of education, college GPA, amount of air pollution, firm sales, number of arrests, etc., where the magnitude of variable conveys useful information.
- Qualitative Variable: gender, race, industry (manufacturing, retail, finance, etc.), region (South, North, West, etc.), rating grade (A, B, C, D, F, etc), etc.
- A way to incorporate qualitative information is to use dummy variables.
- A dummy variable is also called a binary variable or a zero-one variable.
- Dummy variables may appear as the dependent or as independent variables. In the latter discussion, we consider only independent dummy variables.

Instructor: Chaoyi (U. of Guelph)

MLR, Further Issue: A Single Dummy Independent Variable- An Example

• Let's consider following population regression model

wage
$$= eta_0 + \delta_0$$
female $+ eta_1$ educ $+ \mu$

where

female =
$$\begin{cases} 1, \text{ if the person is a woman,} \\ 0, \text{ if the person is a man,} \end{cases}$$
 is a dummy variable.

- Intuitively, δ_0 measures the wage gain/loss if the person is a woman rather than a man (holding other things fixed).
- Alternative interpretation of δ_0

$$\begin{split} \delta_0 &= E[wage|female = 1, educ] - E[wage|female = 0, educ] \\ &= \beta_0 + \delta_0 female + \beta_1 educ - (\beta_0 + \beta_1 educ) \end{split}$$

which gives the difference in mean wage between men and women with the same level of education

MLR, Further Issue: A Single Dummy Independent Variable- An Example Continue

Figure: Graph of wage = $\beta_0 + \delta_0$ female + β_1 educ for $\delta_0 < 0$

• Note that the mean wage difference is the same at all levels of education, i.e., the mean wage equations for men and women are parallel.

MLR, Further Issue: Dummy Variable Trap

• To investigate previous problem, one may consider to propose a population regression model as follows

wage
$$=eta_0+\gamma_0$$
male $+\delta_0$ female $+eta_1$ educ $+\mu$

However, this model cannot be estimated due to perfect collinearity.

- Why? There is an exact relationship among the independent variables: 1 = male + female.
- As a result, when using dummy variables, one category always has to be omitted. Take the previous example as an example

wage =
$$\beta_0 + \delta_0$$
 female + β_1 educ + μ

where men is the base group or benchmark group, i.e., the group with the dummy equal to zero/used for comparison, or

wage =
$$\beta_0 + \gamma_0$$
 male + β_1 educ + μ

where women is the base group (or category).

MLR, Further Issue: Dummy Variable Trap - An Example

• One would like to investigate the effect of gender on wage. Hence, after estimation, we have the following fitted regression line $\widehat{wage} = -1.57$ -1.81female +0.572educ (0.72) (0.26) (0.049) +0.025exper +0.141tenure (0.012) (0.021)

where n = 526, $R^2 = 0.364$

- Holding education, experience, and tenure fixed, women earn $\hat{\delta}_0 = \$1.81$ less per hour than men.
- Does that mean that women are discriminated against?
- May be not necessarily. Being female may be correlated with other productivity characteristics (e.g., baby birth) that have not been controlled for.