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Lecture outline

Last lecture, we studied dummy variables for multiple categories. Today,
we will

Test for differences in regression functions across groups

Summary: MLR further issues

Heteroskedasticity for OLS

Define the terminology
Learn consequences with heteroskedasticity
Study a heteroskedasticity-robust inference
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MLR, Further Issue: Allowing for Different Slopes, An
Example

Consider following fitted regression line
̂log(wage) = 0.389 -0.227female +0.082educ

(0.119) (0.168) (0.008)
-0.0056female ∗ educ +0.029exper -0.00058exper2

(0.0131) (0.005) (0.00011)
+0.032tenure -0.00059tenure2

(0.007) (0.00024)

where n = 526 and R2 = 0.441

Consider the null H0 : βfemale∗educ = 0. |tfemale∗educ | = |−0.00560.0131 | = 0.43 < 1.96.
Hence, no evidence against hypothesis that the return to education is the same for
men and women.

Consider the null H0 : βfemale = 0. |tfemale | = |−0.2270.168 | = 1.35 < 1.96. Does this
mean that there is no significant evidence of lower pay for women at the same
levels of educ, exper , andtenure? No, this is only the effect for educ = 0 because

∂log(wage)

∂female
= −0.227− 0.0056educ (1)
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MLR, Further Issue: Testing for Differences in Regression
Functions across Groups

Let’s consider a F test with the unrestricted model containing full set of
interactions,

cumgpa = β0 + δ0female + β1sat + δ1female ∗ sat + β2hsperc

+δ2female ∗ hsperc + β3tothrs + δ3female ∗ tothrs + µ

and the restricted model with same regression for both group,

cumgpa = β0 + β1sat + β2hsperc + β3tothrs + µ

where

cumgpa= college cumulative GPA
sat=standardized aptitude test score
hsperc= high school rank percentile

tothrs = total hours spent in college courses

The null hypothesis is

H0 : δ0 = δ1 = δ2 = δ3 = 0,

Under the null, the model is the same for male and female, which gets back
to the restricted model.
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MLR, Further Issue: Estimation of the Unrestricted Model

The estimated unrestricted model is
̂cumgpa= 1.48 -0.353female +0.0011sat

(0.21) (0.411) (0.0002)
+0.00075female ∗ sat -0.0085hshsperc -0.00055female ∗ hsperc

(0.00039) (0.0014) (0.00316)
+0.0023tothrs -0.00012female ∗ tothrs

(0.0009) (0.00163)

where n = 366, R2 = 0.406

It can be shown (proof not required) that

SSRur = SSRmale + SSRfemale

where SSRmale is the SSR in the regression

cumgpa = β0 + β1sat + β2hsperc + β3tothrs + µ

using only the data of male, and SSRfemale is the SSR using only the data
of female.
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MLR, Further Issue: Testing Results

Tested individually, the hypothesis that the interaction effects are zero
cannot be rejected.

Tested jointly, the F statistic is

F =
(SSRr − SSRur )/q
SSRur/(n− k − 1)

=
(85.515− 78.355)/4

78.355/(366− 7− 1)
≈ 8.18

and by checking the F table, the null is rejected.

An alternative way to compute SSRur is through the estimation
results of both male only regression and female only regression.
SSRur = SSRmale + SSRfemale = 58.752 + 19.603 = 78.355,
n = nmale + nfemale = 276 + 90 = 366.

This relationship is true only if all interaction terms are included in
the unrestricted model.

If the test is computed in this way, it is called the Chow-Test

Caution: Chow-Test assumes a constant error variance across groups
as assumed in the F test.
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MLR, Further Issue Summary

In this topic, we have introduced several further issues regarding the
MLR

First, we showed that, as we include the quadratic term of one
independent variable into the model, the marginal effect of that
specific independent variable on the dependent variable will not be a
constant. It will be a linear function about that independent variable
itself.

Next, we studied that if we add the interation term (say, x1x2) into
the model. The marginal effect of x1 will be a linear function of x2
and vice versa.

Then, we learned the the adjusted R2 and its relationship with R2.
We show how to use R2 to compare Nonnested Models.

We also illustrated when we should add regressors into the model.
Due to the fact of a tradeoff between decraese in the error variance
and exacerbate in the multicollinearity, the choice in adding more
regressors into the model should be cautious.
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MLR, Further Issue Summary Continue

Next, we explained the problem of predicting y when log(y) is the
dependent variable. We showed that, because of the Jensens inequality, e ŷ

will under estimate E [y |x].
Later on, we move to focus on the dummy. We firstly provides the
motivation to use a dummy - to represent the qualitative information.

Then, we used an example to illustrate how to use a single dummy and how
to avoid the dummy variable trap.

Next, we extended the single dummy to use dummy variables for multiple
categories. We studied how to identify the base category and the economic
meaning in explaining the dummy coefficient.

We also included the interaction among dummy variables into the model.
We showed a ”difference in difference” effect. Furthermore, we also learned
that the model will allow for different slopes if we add the interaction terms
between a dummy and a slope regressor into the model.

Finally, we discussed the test for differences in regression functions across
groups in today’s lecture.
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Heteroskedasticity for OLS: Definition

Recall that if

Var(µi |xi ) = σ2

is constant, that is, if the variance of the conditional distribution of µi

given xi does not depend on xi , then µi is said to be homoskedastic.

Otherwise, if

Var(µi |xi ) = σ2(xi ) = σ2
i

that is, the variance of the conditional distribution of µi given xi
depends on xi , then µi is said to be heteroskedastic.

Recall, following assumption MLR.4, E [µi |xi ] = 0,
Var(µi |xi ) = E [µ2

i |xi ]− E [µi |xi ]2 = E [µ2
i |xi ].

Instructor: Chaoyi (U. of Guelph) ECON 3740 Nov 19, 2018 9 / 14



Heteroskedasticity for OLS: Graphical illustration for
homoskedasticity

Figure: An Example for Homoskedasticity
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Heteroskedasticity for OLS: Graphical illustration for
heteroskedasticity

Figure: An Example for Heteroskedasticity
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Heteroskedasticity for OLS: A Real-Data Example of
Heteroskedasticity

Figure: Average Hourly Earnings vs. Years of Education (data source: Current
Population Survey)
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Heteroskedasticity for OLS: Consequences

OLS is still unbiased under heteroskedasticity because Assumption
MLR.4 E [µi |xi ] = 0 does not involve conditional variance.

Also, interpretation of R2 and adjusted R2 is not changed because

R2 ≈ 1−
σ2

µ

σ2
y

where σ2
mu is the unconditional variance of µ while heteroskedasticity

is about the conditional variance of µ.

However, heteroskedasticity invalidates variance formulas for OLS
estimators.

Hence, the usual F tests and t tests are not valid under
heteroskedasticity because as mentioned before, normality assumption
implies homoskedasticity.

Under heteroskedasticity, OLS is no longer the best linear unbiased
estimator (BLUE). There may be a more efficient linear estimator.
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Heteroskedasticity for OLS: Heteroskedasticity-Robust
Inference

Formulas for OLS standard errors and related statistics have been developed
that are robust to heteroskedasticity of unknown form.

All formulas are only valid in large samples. (related to chapter five of the
textbook, which will not be covered in this course)

Formula for heteroskedasticity-robust OLS standard error is

V̂ar(β̂j ) =
∑n

i=1 r̂
2
ij µ̂

2
i

SSR2
j

= SSR−1j [
n

∑
i=1

r̂2ij µ̂
2
i ]SSR

−1
j

which is also called as Eicker/Huber/White standard errors or sandwich form
standard errors. They involve the squared residuals from the regression, µ̂i
and from a regression of xj on all other explanatory variables, r̂ij .

Using these formulas, the usual t-test is valid asymptotically (n −→ ∞)

The usual F -statistic does not work under heteroskedasticity, but
heteroskedasticity robust versions are available in most software (including R
and STATA).
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