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Topic 2: Linear unobserved effects panel data models

A standard setup for a linear unobserved (individual) effects panel
data model:

yit = αi + β′xit + ε it ,

where

αi is a scalar,

β = (β1, β2, . . . , βk)
T is a k × 1 vector of parameter,

xit = (xit,1, . . . , xit,k)T is a k × 1 vector of exogenous variables,

ε it is an error term and assumed to be i .i .d . with, for all i = 1, . . . , n,
and all t = 1, . . . ,T , we have

E (ε it) = 0, E (ε2it) = σ2.
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Topic 2: Individual effects

There are many names for the scalars αi :

1 unobserved effects

2 individual effects

3 unobserved components

4 latent variables (for random effects models)

If αi is treated as a random variable, the proposed panel model is
called random effect model and αi is called a random effect.

If αi is treated as a fixed as a parameter for each cross section
observation i , the proposed panel model is called fixed effect model
and αi is called a fixed effect.

However, in many (in particular microeconometric) applications,
”fixed effect” does not always assume αi has to be non-random. αi

can still be random but has to be correlated with xit .
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Topic 2: Fixed effects & random effects

Thus, the key to distinguish one from another involves whether or not
the unobserved αi is uncorrelated with the observed explanatory
variables xit .

For fixed effect model, we assume Cov(xit , αi ) ̸= 0 and
E (ε it |αi ) ̸= 0.

For random effect, we assume αi is independent to xi = [xTi1 , . . . ,TiT ]T

such that we have E (αi ) = E (ε it) = 0, E (αixi ) = E (αi ε it) = 0.

Why? Assuming αi is a random variable, we have

f (yi , xi ) = f (yi |xi )f (xi ) =
[∫

f (yi |xi , αi )f (αi |xi )dαi

]
f (xi ),

where yi = [yi1, . . . , yiT ]T , a T × 1 vector.

We need to know f (αi |xi ) and independence implies

f (αi |xi ) = f (αi ).
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Topic 2: Fixed or random effects? An example

Let us consider the simple example of the Cobb Douglass production
function.

Outputit = β1Capitalit + β2Laborit + αi + ε it .

In this case, αi can be the unobserved effect on Total factor
productivity (TFP) due to unobserved country-level omitted factor
(climate, institutions, organization, etc..).

If we expect that the more a country is productive, the more it invests
in capital, in other words αi is positively correlated with Capitalit ,
then we should consider a fixed effect panel model.

We can also employ a Hausman’s test (1978) to test the null
hypothesis of cov(xit , αi ) = 0 for all i and t. This is a specification
test (fixed or random) for the unobserved effects. We will discuss it
more in Topic 3.
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Topic 3: A vector form of a fixed effect model

Define

yi
T×1

=


yi1
yi2
. . .
yiT

 xi
T×k

=


xi1,1 xi1,2 . . . xi1,k
xi2,1 xi2,2 . . . xi2,k
. . .
xiT ,1 xiT ,2 . . . xiT ,k



e
T×1

=


1
1

. . .
1

 εi
T×1

=


ε i1
ε i2
. . .
ε iT

 β
k×1

=


β1

β2

. . .
βk


We can rewrite our fixed model as

yi = eαi + xi β + εi , (1)

for all i = 1, . . . , n, where αi is assumed to be a fixed term or a
random variable satisfying E (αi |xi ) ̸= 0.
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Topic 3: LS dummy variable (LSDV) estimator

Stacking all n observations, we can rewrite model (1) as
y1
y2
. . .
yn

 =


e
0

. . .
0

 α1 +


0
e

. . .
0

 α2 + . . . +


0
0

. . .
e

 αn +


x1
x2
. . .
xn

 β +


ε1
ε2
. . .
εn


(2)

For model (2), we assume E (εi ) = 0, E (εi εi
T ) = σ2IT , and

E (εi εj
T ) = 0 if i ̸= j .

Under the assumed properties of εi , we know that the ordinary
least-squares (OLS) estimator of model (2) is the best linear unbiased
estimator (BLUE).
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Topic 3: LSDV estimator derivation

The OLS estimators of αi and β ar obatined by minimizing

SSR =
n

∑
i=1

(yi − eαi − xi β)
T (yi − eαi − xi β) . (3)

Taking partial derivatives of SSR w.r.t. αi , the FOC gives

α̂LSDV
i = ȳi − x̄i β, i = 1, . . . , n, (4)

where ȳi =
1
T ∑T

t=1 yit , x̄i =
1
T ∑T

t=1 x
T
it .

Substituting (4) into (3) and taking the partial derivative of SSR
w.r.t. β, we have

β̂
LSDV

=

[
n

∑
i=1

T

∑
t=1

(xit − x̄i ) (xit − x̄i )
T

]−1 [
n

∑
i=1

T

∑
t=1

(xit − x̄i ) (yit − ȳi )

]
.
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Topic 3: LSDV remarks

The computational procedure for estimating the slope parameters in
this model does not require that the dummy variables for the
individual (and/or time) effects actually be included in the matrix of
explanatory variables.

We only need to take the following steps:

1 the sample average of time-series observations separately for each
cross-sectional unit

2 transform the observed variables by subtracting out these means

3 apply the least squares method to the transformed data

The above demeaned transformation is called a ”within-group”
transformation and, thus, the above estimator is also called
”within-group estimator”.
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Topic 3: Within-group estimator

The foregoing procedure is equivalent to premultiplying the i th

equation yi = eαi + xi β + εi by a T × T idempotent (covariance)
transformation matrix Q = IT − 1

T eeT to “sweep out” the individual
effect αi such that, for i = 1, . . . , n, we have

Qyi = Qeαi +Qxi β +Qεi = Qxi β +Qεi . (5)

Applying the OLS procedure to (5), we have

β̂
W

=

[
n

∑
i=1

xi
TQxi

]−1 [
n

∑
i=1

xi
TQyi

]
.

β̂
W

is identical to β̂
LSDV

!
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Topic 3: Properties of the LSDV and within-group
estimator

1 The LSDV (β̂
LSDV

) and within-group estimator (β̂
W
) of β is

unbiased and consistent when either n, or T, or both tend to infinity.

2 The LSDV estimator (α̂LSDV
i ) for the unobserved effects is unbiased

but only consistent when T −→ ∞. It is inconsistent if T is fixed.

3 The asymptotic variance-covariance matrix of the β̂
W

(or β̂
LSDV

) is
give by

Var(β̂
W
) = σ2

[
n

∑
i=1

xi
TQxi

]−1

.

4 When var(ε it) = σ2
i , within-group (or LSDV) estimator will be no

longer BLUE. However, it remains consistent.
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Topic 3: A Stata example to estimate a fixed effects model

Let us consider a simple panel regression model for the wages of
young working women who had an age of 14–26 years in 1968. These
data are collected within the ”National Longitudinal Survey” over the
years 1968-1988 (with gaps). There are 28534 observations in total.

Step 1: use the ”use” command to load a sample dataset, and then
use the ”xtset” command to declare the dataset as a panel dataset
with a group variable and a time variable:
use http://www.stata-press.com/data/r14/nlswork.dta,

clear

xtset idcode year

Step 2: run a fixed effect regression using the ”xtreg” command
with the ”fe” option , which specifies fixed effects. In this example.
Then, regress log wages on age and total experience, with fixed
effects for individuals:
xtreg lnwage age grade ttlexp, fe.
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