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Lecture outline

Last lecture, we learned the types of data, some terminologies for the
simple linear regression model, and part of the derivation of OLS
estimators. Today, we will

complete the derivation for the OLS estimators
solve for the β̂0 & β̂1 based on the two FOCs we derived in last lecture

introduce some measures of fit
SST
SSE
SSR
R2

change the units measurement
handle the technique to characterize non-linearity

take logs of the dependent variable only
take logs of the independent variable only
take logs of both
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The ordinary least squares estimator (OLS): derivation

Now, we have two FOCs.

1/n∑n
i=1

(
yi − β̂0 − β̂1xi

)
= 0

1/n ∑n
i=1 xi

(
yi − β̂0 − β̂1xi

)
= 0

We will use these two FOCs to derive β0 and β1.
Step 1: Derive OLS estimator of β0 as a function of OLS estimator of
β1

1/n∑n
i=1

(
yi − β̂0 − β̂1xi

)
= 0

=⇒ 1/n ∑n
i=1 yi − 1/n ∑n

i=1 β̂0 − 1/n ∑n
i=1 β̂1xi = 0

=⇒ 1/n ∑n
i=1 yi − 1

nnβ̂0 − β̂1
1
n ∑n

i=1 xi = 0

=⇒ ȳi − β̂0 − β̂1x̄i = 0

The last equation gives

β̂0 = ȳi − β̂1x̄i
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The ordinary least squares estimator (OLS): derivation

Step 2: Solve for the OLS estimator of β1 (β̂1)

∑n
i=1 xi

(
yi − β̂0 − β̂1xi

)
= 0

=⇒ ∑n
i=1 xi

(
yi −

(
ȳi − β̂1x̄i

)
− β̂1xi

)
= 0

=⇒ ∑n
i=1 xi

((
yi − ȳi

)
−
(

β̂1xi − β̂1x̄i
))

= 0

=⇒ ∑n
i=1 xi

(
yi − ȳi

)
− β̂1 ∑n

i=1 xi
(
xi − x̄i

)
= 0

Simple Algebra trick can show

=⇒ ∑n
i=1

(
xi − x̄i

)(
yi − ȳi

)
− β̂1 ∑n

i=1

(
xi − x̄i

)(
xi − x̄i

)
= 0
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The ordinary least squares estimator (OLS): derivation

=⇒ β̂1 =
∑n

i=1

(
xi − x̄i

)(
yi − ȳi

)
∑n

i=1

(
xi − x̄i

)(
xi − x̄i

) =
Sxy
S2
x

Then, β̂0 can be calculated by substituting above equation into
β̂0 = ȳi − β̂1x̄i .

The OLS predicted values are

ŷi = β̂0 + β̂1xi

The OLS residuals are

µ̂i = yi − ŷi
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The ordinary least squares estimator (OLS): measures of fit

How well does the estimated regression line describe the data?
Does the regressor X account for much or for little variation in Y ?
Are the observations in the scatter plot clustered closely around the
regression line?

Some measures can help us answer above questions!

SST: Total sum of squares measures the total amount of variability in
the dependent variable. That is, it measures how spread out the yi
are in the sample.

SST =
n

∑
i=1

(yi − ȳ)2

SSE: Explained sum of squares measures the sample variation in the
ŷi (where we use the fact that the mean of ŷi = ȳ)

SSE =
n

∑
i=1

(ŷi − ȳ)2
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The ordinary least squares estimator (OLS): measures of fit

SSR: Sum of squared residuals measures the total amount of
variability that the model does not explain

SSR =
n

∑
i=1

(µ̂i )
2

R2: measures the variation ”explained” by the model

R2 =
ESS

TSS

The R2 ranges from 0 to 1

If R2 = 0, xi explains zero variation in yi
If R2 = 1, xi explains all of the variation in yi
in practice R2 ∈ (0, 1)
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The ordinary least squares estimator (OLS): The R2

Relationship among SST , SSR, SSE?

The total variation in y can always be expressed as the sum of the
explained variation and the unexplained variation SSR. Thus

SST = SSE + SSR
n

∑
i=1

(yi − ȳ)2 =
n

∑
i=1

(ŷi − ȳ)2 +
n

∑
i=1

(µ̂i )
2

This implies

R2 =
SSE

SSR
=

SST − SSR

SST
= 1− SSR

SST

At home: prove SST = SSE + SSR mathematically.
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The ordinary least squares estimator (OLS): An example
for R2

Recall the wage problem, our model is

wage = β0 + β1educ + µ

Once we estimated the model using R, we have following results
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The ordinary least squares estimator (OLS): an example
for R2

Therefore,

ˆwage = −0.90485 + 0.54136 educ & R2 = 0.1648

The education level explains 16.5% of the variation in wage based on
our sample.

Even the R2 in above example is high, generally speaking, in the
social sciences, we have to notice that low R2 in regression equations
are not uncommon, especially for cross-sectional analysis. We will
discuss this issue more generally under multiple regression analysis.
However, it is worth emphasizing now that a seemingly low R2 does
not necessarily mean that an OLS regression equation is useless.
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The ordinary least squares estimator (OLS): changing units
of measurement

Data Scaling

Predictions in different units
Different interpretations

Example:

wage=β0 + β1educ + µ
educ is in years
wage is in dollar

Estimates:

ˆwage = β̂0 + β̂1educ

Intuitively, the result implies one more year education increases β̂1

dollars in wage.
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The ordinary least squares estimator (OLS): changing units
of measurement

Now, suppose the wage unit changes from dollars to cents,

=⇒ ˆwagedollars =
1

100
ˆwagecents (1)

Recall, the original estimation gives

ˆwage = β̂0 + β̂1educ (2)

next, we substitute equation (1) in to (2)
1

100
ˆwagecents = β̂0 + β̂1educ (3)

ˆwagecents = 100β̂0 + 100β̂1educ

Intuitively, the result implies one more year education increases 100β̂1

cents in wage.
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The ordinary least squares estimator (OLS): handling
non-linearity

In the real life, you will often encounter regression equations where
the dependent variable appears in logarithmic form. Why we need it?
Recall the wage-education case, where we regressed dollars of wage
on years of education. Because of the linear nature, β̂1 dollars is the
increase for either the first year of education or the tenth year of
education. This can be highly doubted!

Ideally, a better characterization of how wage changes with education
is that each year of education increases wage by a constant
percentage.

Three ways to handle non-linearity

Take logs of the dependent variable only
Take logs of the independent variable only
Take logs of both
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The ordinary least squares estimator (OLS): handling
non-linearity

Case 1: wage is in logs (take logs of the dependent variable only)

log( ˆwage) = β̂0 + β̂1educ

How do we interpret β̂1?

Totally differentiate gives
1

ˆwage
∂ ˆwage = β̂1∂educ

To simplfy, we have
∂ ˆwage

ˆwage
× 100︸ ︷︷ ︸

% change

= (β̂1 × 100) ∂educ︸ ︷︷ ︸
unit change

Therefore, we can interpret the story as a one-year increase in
education tields a β̂1% increase in wage
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