ECON 3740: INTRODUCTION TO ECONOMETRICS

Instructor: Chaoyi Chen
Department of Economics and Finance, University of Guelph

Lecture 4

Lecture outline

Last lecture, we learned the types of data, some terminologies for the simple linear regression model, and part of the derivation of OLS estimators. Today, we will

- complete the derivation for the OLS estimators
- solve for the $\hat{\beta}_{0} \& \hat{\beta}_{1}$ based on the two FOCs we derived in last lecture
- introduce some measures of fit
- SST
- SSE
- SSR
- R^{2}
- change the units measurement
- handle the technique to characterize non-linearity
- take logs of the dependent variable only
- take logs of the independent variable only
- take logs of both

The ordinary least squares estimator (OLS): derivation

- Now, we have two FOCs.

$$
\begin{gathered}
1 / \mathrm{n} \sum_{i=1}^{n}\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}\right)=0 \\
1 / \mathrm{n} \sum_{i=1}^{n} x_{i}\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}\right)=0
\end{gathered}
$$

- We will use these two FOCs to derive β_{0} and β_{1}.
- Step 1: Derive OLS estimator of β_{0} as a function of OLS estimator of β_{1}

$$
\begin{gathered}
1 / n \sum_{i=1}^{n}\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}\right)=0 \\
\Longrightarrow 1 / n \sum_{i=1}^{n} y_{i}-1 / n \sum_{i=1}^{n} \hat{\beta}_{0}-1 / n \sum_{i=1}^{n} \hat{\beta}_{1} x_{i}=0 \\
\Longrightarrow 1 / n \sum_{i=1}^{n} y_{i}-\frac{1}{n} n \hat{\beta}_{0}-\hat{\beta}_{1} \frac{1}{n} \sum_{i=1}^{n} x_{i}=0 \\
\Longrightarrow \bar{y}_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} \bar{x}_{i}=0
\end{gathered}
$$

- The last equation gives

$$
\hat{\beta}_{0}=\bar{y}_{i}-\hat{\beta}_{1} \bar{x}_{i}
$$

The ordinary least squares estimator (OLS): derivation

- Step 2: Solve for the OLS estimator of $\beta_{1}\left(\hat{\beta}_{1}\right)$

$$
\begin{gathered}
\sum_{i=1}^{n} x_{i}\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i}\right)=0 \\
\Longrightarrow \sum_{i=1}^{n} x_{i}\left(y_{i}-\left(\bar{y}_{i}-\hat{\beta}_{1} \bar{x}_{i}\right)-\hat{\beta}_{1} x_{i}\right)=0 \\
\Longrightarrow \sum_{i=1}^{n} x_{i}\left(\left(y_{i}-\bar{y}_{i}\right)-\left(\hat{\beta}_{1} x_{i}-\hat{\beta}_{1} \bar{x}_{i}\right)\right)=0 \\
\Longrightarrow \sum_{i=1}^{n} x_{i}\left(y_{i}-\bar{y}_{i}\right)-\hat{\beta}_{1} \sum_{i=1}^{n} x_{i}\left(x_{i}-\bar{x}_{i}\right)=0
\end{gathered}
$$

Simple Algebra trick can show

$$
\Longrightarrow \sum_{i=1}^{n}\left(x_{i}-\bar{x}_{i}\right)\left(y_{i}-\bar{y}_{i}\right)-\hat{\beta}_{1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}_{i}\right)\left(x_{i}-\bar{x}_{i}\right)=0
$$

The ordinary least squares estimator (OLS): derivation

$$
\Longrightarrow \hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}_{i}\right)\left(y_{i}-\bar{y}_{i}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}_{i}\right)\left(x_{i}-\bar{x}_{i}\right)}=\frac{S_{x y}}{S_{x}^{2}}
$$

- Then, $\hat{\beta}_{0}$ can be calculated by substituting above equation into $\hat{\beta}_{0}=\bar{y}_{i}-\hat{\beta}_{1} \bar{x}_{i}$.
- The OLS predicted values are

$$
\hat{y}_{i}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{i}
$$

- The OLS residuals are

$$
\hat{\mu}_{i}=y_{i}-\hat{y}_{i}
$$

The ordinary least squares estimator (OLS): measures of fit

- How well does the estimated regression line describe the data?
- Does the regressor X account for much or for little variation in Y ?
- Are the observations in the scatter plot clustered closely around the regression line?
- Some measures can help us answer above questions!
- SST: Total sum of squares measures the total amount of variability in the dependent variable. That is, it measures how spread out the y_{i} are in the sample.

$$
S S T=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}
$$

- SSE: Explained sum of squares measures the sample variation in the \hat{y}_{i} (where we use the fact that the mean of $\hat{y}_{i}=\bar{y}$)

$$
S S E=\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}
$$

The ordinary least squares estimator (OLS): measures of fit

- SSR: Sum of squared residuals measures the total amount of variability that the model does not explain

$$
S S R=\sum_{i=1}^{n}\left(\hat{\mu}_{i}\right)^{2}
$$

- R^{2} : measures the variation "explained" by the model

$$
R^{2}=\frac{E S S}{T S S}
$$

- The R^{2} ranges from 0 to 1
- If $R^{2}=0, x_{i}$ explains zero variation in y_{i}
- If $R^{2}=1, x_{i}$ explains all of the variation in y_{i}
- in practice $R^{2} \in(0,1)$

The ordinary least squares estimator (OLS): The R^{2}

- Relationship among SST, SSR, SSE ?
- The total variation in y can always be expressed as the sum of the explained variation and the unexplained variation SSR. Thus

$$
\begin{gathered}
\text { SST }=\text { SSE }+ \text { SSR } \\
\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}=\sum_{i=1}^{n}\left(\hat{y}_{i}-\bar{y}\right)^{2}+\sum_{i=1}^{n}\left(\hat{\mu}_{i}\right)^{2}
\end{gathered}
$$

- This implies

$$
R^{2}=\frac{S S E}{S S R}=\frac{S S T-S S R}{S S T}=1-\frac{S S R}{S S T}
$$

- At home: prove $S S T=S S E+S S R$ mathematically.

The ordinary least squares estimator (OLS): An example for R^{2}

- Recall the wage problem, our model is

$$
\text { wage }=\beta_{0}+\beta_{1} e d u c+\mu
$$

- Once we estimated the model using R, we have following results

```
Ca17:
1m(formula = wage ~ educ)
Residuals:
\begin{tabular}{rrrrr} 
Min & 1Q Median & MQ & Max \\
-5.3396 & -2.1501 & -0.9674 & 1.1921 & 16.6085
\end{tabular}
coefficients:
```



```
Residual standard error: 3.378 on 524 degrees of freedom
Multiple R-squared: O.1648, Adjusted R-squared: 0.1632
F-statistic: 103.4 on 1 and 524 DF, p-value: < 2.2e-16
```


The ordinary least squares estimator (OLS): an example for R^{2}

- Therefore,

$$
\text { wâge }=-0.90485+0.54136 \text { educ \& } R^{2}=0.1648
$$

- The education level explains 16.5% of the variation in wage based on our sample.
- Even the R^{2} in above example is high, generally speaking, in the social sciences, we have to notice that low R^{2} in regression equations are not uncommon, especially for cross-sectional analysis. We will discuss this issue more generally under multiple regression analysis. However, it is worth emphasizing now that a seemingly low R^{2} does not necessarily mean that an OLS regression equation is useless.

The ordinary least squares estimator (OLS): changing units of measurement

- Data Scaling
- Predictions in different units
- Different interpretations
- Example:

$$
\begin{gathered}
\text { wage }=\beta_{0}+\beta_{1} \text { educ }+\mu \\
\text { educ is in years } \\
\text { wage is in dollar }
\end{gathered}
$$

- Estimates:

$$
\text { wâge }=\hat{\beta}_{0}+\hat{\beta}_{1} e d u c
$$

- Intuitively, the result implies one more year education increases $\hat{\beta}_{1}$ dollars in wage.

The ordinary least squares estimator (OLS): changing units of measurement

- Now, suppose the wage unit changes from dollars to cents,

$$
\begin{equation*}
\Longrightarrow \text { wâge }_{\text {dollars }}=\frac{1}{100} \text { wâge }_{\text {cents }} \tag{1}
\end{equation*}
$$

- Recall, the original estimation gives

$$
\begin{equation*}
\text { wâge }=\hat{\beta}_{0}+\hat{\beta}_{1} e d u c \tag{2}
\end{equation*}
$$

- next, we substitute equation (1) in to (2)

$$
\begin{gather*}
\frac{1}{100} \text { wâge }_{\text {cents }}=\hat{\beta}_{0}+\hat{\beta}_{1} e d u c \tag{3}\\
\text { wâge }_{\text {cents }}=100 \hat{\beta}_{0}+100 \hat{\beta}_{1} \text { educ }
\end{gather*}
$$

- Intuitively, the result implies one more year education increases $100 \hat{\beta}_{1}$ cents in wage.

The ordinary least squares estimator (OLS): handling non-linearity

- In the real life, you will often encounter regression equations where the dependent variable appears in logarithmic form. Why we need it? Recall the wage-education case, where we regressed dollars of wage on years of education. Because of the linear nature, $\hat{\beta}_{1}$ dollars is the increase for either the first year of education or the tenth year of education. This can be highly doubted!
- Ideally, a better characterization of how wage changes with education is that each year of education increases wage by a constant percentage.
- Three ways to handle non-linearity
- Take logs of the dependent variable only
- Take logs of the independent variable only
- Take logs of both

The ordinary least squares estimator (OLS): handling non-linearity

- Case 1: wage is in logs (take logs of the dependent variable only)

$$
\log (\text { wâge })=\hat{\beta}_{0}+\hat{\beta}_{1} e d u c
$$

- How do we interpret $\hat{\beta}_{1}$?
- Totally differentiate gives

$$
\frac{1}{\text { wâge }} \text { дwâge }=\hat{\beta}_{1} \partial e d u c
$$

- To simplfy, we have

$$
\underbrace{\frac{\text { dwâge }}{\text { wâge }} \times 100}_{\% \text { change }}=\left(\hat{\beta}_{1} \times 100\right) \underbrace{\text { deduc }}_{\text {unit change }}
$$

- Therefore, we can interpret the story as a one-year increase in education tields a $\hat{\beta}_{1} \%$ increase in wage

