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Lecture outline

Last lecture, we learned how to derive the OLS estimator of the simple
linear regression model, some meaures of fit, and how to use log technique
to model the nonlineaurity (case 1). Today, we will

continue the model in nonlinearity using the log technique (case 2
and case 3)

focus on expected values and variances of the OLS estimators

expectations of the OLS estimator and homoskedasticity
assumptions we need to satisfy unbiasedness
variances of the OLS estimator and the homoskedasticity
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The ordinary least squares estimator (OLS): handling
non-linearity

Case 2: educ is in logs (take logs of the independent variable only)

ˆwage = β̂0 + β̂1log(educ)

How do we interpret β̂1?

Totally differentiate gives

∂ ˆwage = β̂1

∂educ

educ

To simplfy, we have

∂ ˆwage︸ ︷︷ ︸
unit change

= (β̂1)
∂educ

educ︸ ︷︷ ︸
% change

Therefore, we can interpret the story as a 1% increase in education
yields a β̂1 dollars increase in wage.
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The ordinary least squares estimator (OLS): handling
non-linearity

Case 3: wage and educ are both in logs (take logs on both dependent
variable and independent variable)

log( ˆwage) = β̂0 + β̂1log(educ)

How do we interpret β̂1?

Totally differentiate gives

1

ˆwage
∂ ˆwage × 100︸ ︷︷ ︸
% change

= (β̂1)
∂educ

educ
× 100︸ ︷︷ ︸

% change

Therefore, we can interpret the story as a 1% increase in education
yields a β̂1% increase in wage. (In log-log model, β̂1 is the elasticity
of y with respect to x .)
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The ordinary least squares estimator (OLS): handling
non-linearity summary

For the wage and education example,

Table: Summary of Functional Forms Involving Log: Example of Wage-Educ

Model Dependent Independent Interpretation of β1

level-level wage educ 1 year ↑ in educ leads to β1 dollars ↑ in wage

log-level log(wage) educ 1 year ↑ in educ leads to β1% ↑ in wage

level-log wage log(educ) 1 % ↑ in educ leads to β1 dollars ↑ in wage

log-log log(wage) log(educ) 1 % ↑ in educ leads to β1% ↑ in wage
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Simple linear regression model: unbiasedness of OLS

In the lecture 3, we defined the population model
yi = β0 + β1xi + µi , and we claimed that the key assumption for
simple regression analysis to be useful is E (µ|x) = 0.

In the lecture 4, we discussed the algebraic properties of OLS
estimation.

We now return to the population model and study the statistical
properties of OLS.

Study the statistical properties of OLS estimators means we will study
properties of the distributions of β̂0, β̂1 over different random samples
from the population.
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Simple linear regression model: unbiasedness of OLS

Definition: if OLS estimators are unbiased, then

E [β̂1|x ] = β1

E [β̂0|x ] = β0

β̂0 and β̂1 are unbiased if the following four assumptions hold

linear in parameter: yi = β0 + β1xi
random sample of size n. {(xi , yi ) : i = 1, 2, .., n}
sample variation in the explanatory variable (σ2

x > 0)
zero conditional mean (E (µ|X ) = 0)
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Simple linear regression model: unbiasedness of OLS

Proof for the unbiasedness:
we have four assumptions plus

Yi = β0 + β1Xi + µi , Ȳ = β0 + β1Xi + µ̄

We aim to get E (β̂1|x) = β1

E [β̂1] = E [
∑n

i=1

(
xi − x̄i

)(
yi − ȳi

)
∑n

i=1

(
xi − x̄i

)(
xi − x̄i

) ]
substitute for Yi and Ȳ with β0 + β1Xi + µ̄ and β0 + β1Xi + µ̄

= E [
∑n

i=1

(
xi − x̄i

)(
β0 + β1Xi + µ̄− (β0 + β1Xi + µ̄)

)
∑n

i=1

(
xi − x̄i

)(
xi − x̄i

) ]

Note that β0 cancel out

= E [
∑n

i=1

(
xi − x̄i

)(
β1(Xi − X̄ ) + (µi − µ̄)

)
∑n

i=1

(
xi − x̄i

)(
xi − x̄i

) ]
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Simple linear regression model: unbiasedness of OLS

rewrite & use expectation rule, we have

= E [
β1 ∑n

i=1

(
xi − x̄i

)(
xi − x̄i

)
∑n

i=1

(
xi − x̄i

)(
xi − x̄i

) ] + E [
∑n

i=1

(
xi − x̄i

)(
µi − µ̄

)
∑n

i=1

(
xi − x̄i

)(
xi − x̄i

) ]
Note that ∑n

i=1(xi − x̄)(µi − µ̄) = ∑n
i=1(xi − x̄)µi (will show it in lecture)

Therefore,

E [β̂1] = β1 × E [
∑n

i=1

(
xi − x̄i

)(
xi − x̄i

)
∑n

i=1

(
xi − x̄i

)(
xi − x̄i

) ]︸ ︷︷ ︸
=1

+E [
∑n

i=1

(
xi − x̄i

)
µi

∑n
i=1

(
xi − x̄i

)(
xi − x̄i

) ]

By the law of iterated expectation (LIE)

= β1 + E [
∑n

i=1

(
xi − x̄i

)
µi |xi

∑n
i=1

(
xi − x̄i

)(
xi − x̄i

) ]
Hence, E [β̂1] = β1 if E [µi |xi ] = 0, which is just our zero conditional mean
assumption. This completes our proof.
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Simple linear regression model: variance of OLS

We have discussed the mean of the OLS estimator and derived its
unbiasedness.

We are also interested to see the variance of the OLS estimator
(Var(β1)). Why? Intuitively, the unbiasedness shows the sampling
distribution of β̂1 is centered about β1. However, it is important to
know how far we can expect β̂1 to be away from β1 on avergae.

Under assumptions 1-4, the variance of the OLS estimators can be
computed but with very complicated expression. To simplify the
problem, we need one more assumption, which is traditional for
cross-sectional analysis, ”the homoskedasticity” assumption.
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Simple linear regression model: variance of OLS

Homoskedasticity : The error µ has the same variance given any value
of the explanatory variable. In other words,

Var(µ|x) = σ2

variance of error is common across x

assumptions 1-4 plus ”the homoskedasticity” assumption constitute
the famous ”Gauss-Markov Assumptions”.

since Var(µ|x) = E (µ2|x)− [E (µ|x)]2 (why?) and
E (µ|x) = 0, E (µ2|x) = σ2, Var(µ) = σ2. That is, σ2 is both
conditional and unconditional variance for µ.

if Var(µ|x) 6= Var(µ), errors are heteroskedastic. The error variance
changes as x changes.
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Simple linear regression model: homoskedastic error - a
graph illustration

Instructor: Chaoyi (U. of Guelph) ECON 3740 September 24, 2018 12 / 14



Simple linear regression model: graph for heteroskedastic
error - a graph illustration
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Simple linear regression model: sample variance of the
OLS estimators

Under assumptions 1-5, we can show the variance of β̂1

Var(β̂1) =
σ2

∑n
i=1(xi − x̄)2

Under assumptions 1-5, we can show the variance of β̂0

Var(β̂1) =
σ2n−1 ∑n

i=1 x
2
i

∑n
i=1(xi − x̄)2

We will go through the derivations next lecture.
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