# Empirical Panel Data: Lecture 5 

## Instructor: Chaoyi Chen NJE \& MNB

## April 5, 2023

@copyright Chaoyi Chen (NJE \& MNB). All rights reserved. Please do not distribute without express written consent.

## Topic 3: A linear unobserved effects panel data models: error-component model

- A generalized setup for a linear unobserved (individual) effects panel data model consist of three components

$$
\begin{align*}
& y_{i t}=\beta^{\top} x_{i t}+u_{i t}, 1 \leq i \leq n, 1 \leq t \leq T  \tag{1}\\
& u_{i t}=\alpha_{i}+\lambda_{t}+\varepsilon_{i t}
\end{align*}
$$

- $\alpha_{i}$ is the individual effect
- $\lambda_{t}$ is the time effect
- $\varepsilon_{i t}$ is the idiosyncratic error term


## Topic 3: Random effects assumptions

- We make the following assumptions to support the model (1).

Assumptions RE: The errors terms $u_{i t}=\alpha_{i}+\lambda_{t}+\varepsilon_{i t}$ are i.i.d. for all $1 \leq i \leq n, 1 \leq t \leq T$ with
(1) $E\left(\alpha_{i}\right)=E\left(\lambda_{t}\right)=E\left(\varepsilon_{i t}\right)=0$
(2) $E\left(\alpha_{i} \lambda_{t}\right)=E\left(\lambda_{t} \varepsilon_{i t}\right)=E\left(\alpha_{i} \varepsilon_{i t}\right)=0$
(3) $E\left(\alpha_{i} \alpha_{j}\right)=\left\{\begin{array}{l}\sigma_{\alpha}^{2}, \quad i=j \\ 0, \quad i \neq j\end{array}\right.$
(9) $E\left(\lambda_{t} \lambda_{s}\right)= \begin{cases}\sigma_{\lambda}^{2}, & i=j \\ 0, & i \neq j\end{cases}$
(6) $E\left(\varepsilon_{i t} \varepsilon_{j s}\right)=\left\{\begin{array}{l}\sigma_{\varepsilon}^{2}, t=s, i=j \\ 0, \text { otherwise }\end{array}\right.$
(0) $E\left(\alpha_{i} x_{i t}^{\top}\right)=E\left(\lambda_{t} x_{i t}^{\top}\right)=E\left(\varepsilon_{i t} x_{i t}^{\top}\right)=0$

## Topic 3: Remarks on Assumptions RE

- Assumptions RE implies $\alpha_{i}$ is uncorrelated with $x_{i t}$.
- Under Assumptions RE, the variance of $y_{i t}$ conditional on $x_{i t}$ is equal to:

$$
\sigma_{y \mid x}^{2}=\sigma_{u}^{2}=\sigma_{\alpha}^{2}+\sigma_{\lambda}^{2}+\sigma_{\varepsilon}^{2}
$$

- Assumptions RE can be extended to non-zero-mean unobserved individual effect, $\alpha_{i}^{*}$, with $E\left(\alpha_{i}^{*}\right)=\mu$. Then, we can define $\alpha_{i}^{*}=\mu+\alpha_{i}$ and the new error-component model is

$$
\begin{aligned}
& y_{i t}=\mu+\beta^{\top} x_{i t}+u_{i t}, 1 \leq i \leq n, 1 \leq t \leq T \\
& u_{i t}=\alpha_{i}+\lambda_{t}+\varepsilon_{i t}
\end{aligned}
$$

- W.l.o.g., in the following, for simplicity, we do not introduce any time effects and consider a simple random effect model with a non-zero-mean $\alpha_{i}$, where $u_{i t}=\alpha_{i}+\varepsilon_{i t}$.


## Topic 3: A vector form of a random effect model

- For the random effect model

$$
\begin{aligned}
& y_{i t}=\mu+\beta^{\top} x_{i t}+u_{i t}, 1 \leq i \leq n, 1 \leq t \leq T \\
& u_{i t}=\alpha_{i}+\varepsilon_{i t}
\end{aligned}
$$

we can use the following vectorial expression to redefine it

$$
\begin{align*}
\underset{(T \times 1)}{\boldsymbol{y}_{i}} & =\underset{(T \times k+1)(k+1 \times 1)}{\boldsymbol{X}} \underset{(T \times 1)}{\gamma}+\underset{(T \times 1)}{\boldsymbol{u}_{\boldsymbol{i}}},  \tag{2}\\
\underset{(T \times 1)}{\boldsymbol{u}_{\boldsymbol{i}}} & =\underset{(T \times 1)}{\boldsymbol{e}} \alpha_{i}+\underset{(T \times 1)}{\boldsymbol{\varepsilon}_{\boldsymbol{i}}} \tag{3}
\end{align*}
$$

$\underset{(k+1 \times 1)}{\boldsymbol{X}_{i}}=\left(\begin{array}{cc}\boldsymbol{e} & \boldsymbol{x}_{\boldsymbol{i}} \\ (T \times 1)^{\prime} \\ (T \times k)\end{array}\right)$
${ }^{-} \underset{(k+1 \times 1)}{\gamma}=\left(\mu, \beta^{\top}\right)^{\top}$

## Topic 3: Variance-covariance matrix of errors

- Under Assumptions RE, the variance-covariance matrix of $\boldsymbol{u}_{\boldsymbol{i}}$ is equal to

$$
\begin{aligned}
& \Omega=E\left(\boldsymbol{u}_{\boldsymbol{i}} \boldsymbol{u}_{\boldsymbol{i}}^{\top}\right)=E\left[\left(\boldsymbol{e} \alpha_{i}+\boldsymbol{\varepsilon}_{\boldsymbol{i}}\right)\left(\boldsymbol{e} \alpha_{i}+\boldsymbol{\varepsilon}_{\boldsymbol{i}}\right)^{\top}\right]=\sigma_{\alpha}^{2} \boldsymbol{e} \boldsymbol{e}^{\top}+\sigma_{\varepsilon}^{2} I_{T} \\
& \underset{T \times T}{\Omega}=\left[\begin{array}{cccc}
\sigma_{\alpha}^{2}+\sigma_{\varepsilon}^{2} & \sigma_{\alpha}^{2} & \ldots & \sigma_{\alpha}^{2} \\
\sigma_{\alpha}^{2} & \sigma_{\alpha}^{2}+\sigma_{\varepsilon}^{2} & \ldots & \sigma_{\alpha}^{2} \\
\ldots & \ldots & \ldots & \ldots \\
\sigma_{\alpha}^{2} & \sigma_{\alpha}^{2} & \ldots & \sigma_{\alpha}^{2}+\sigma_{\varepsilon}^{2}
\end{array}\right]
\end{aligned}
$$

- The off-diagonal elements are non-zero due to the presence of $\alpha_{i}$ produces a correlation among errors of the same cross-sectional unit (autocorrelation)!


## Topic 3: Variance-covariance matrix of errors

- The inverse matrix of $\Omega$ is

$$
\Omega^{-1}=\frac{1}{\sigma_{\varepsilon}^{2}}\left[I_{T}-\left(\frac{\sigma_{\alpha}^{2}}{\sigma_{\varepsilon}^{2}+T \sigma_{\alpha}^{2}}\right) \boldsymbol{e} \boldsymbol{e}^{\top}\right]
$$

- Let $\underset{(n T \times 1)}{\boldsymbol{u}}=\left[\boldsymbol{u}_{1}^{\top}, \boldsymbol{u}_{2}^{\top}, \ldots, \boldsymbol{u}_{\boldsymbol{n}}{ }^{\top}\right]^{\top}$, we have

$$
\begin{aligned}
\underset{(n T \times n T)}{\Omega(\boldsymbol{u})} & =E\left(\boldsymbol{u} \boldsymbol{u}^{\top}\right)=\Omega \otimes I_{n} \\
\Omega(\boldsymbol{u}) & =\left[\begin{array}{cccc}
\Omega & 0 & \ldots & 0 \\
0 & \Omega & 0 & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & \Omega
\end{array}\right]
\end{aligned}
$$

## Topic 3: Within transformation in random effects model

- In the last lecture, we used an idempotent matrix $Q=I_{T}-\frac{1}{T} \boldsymbol{e} \boldsymbol{e}^{T}$ to eliminate the individual effect $\alpha_{i}$ in the fixed effect model. Similarly, this technique can be used to obtain the within-group (or LSDV) estimator in the random effect model.
- Under Assumptions RE, where $\alpha_{i}$ is random and correlated with $x_{i t}$, the within-group estimator is unbiased and consistent as either $n$, or T , or both tend to infinity.
- However, the within-group estimator is not the Best Linear Unbiased Estimator (BLUE).
- In this case, the is the Generalized Least Squares (GLS) estimator is the BLUE estimator. ${ }^{1}$

[^0]
## Review: Weighted least squares (WLS)

- Consider the classical linear regression model as studied in Lecture 1:

$$
\boldsymbol{y}=\boldsymbol{x} \boldsymbol{\beta}+\mu
$$

- Assume that Gauss-Markov Assumptions 1-4 hold, but Assumption 5 does not hold (i.e., we assume heteroscedastic errors). Specifically, we assume $E\left(\mu \mu^{\top}\right)=\Omega$, where $\Omega$ may depend on $i$ or be correlated with $x_{i}$. However, we assume there is no autocorrealtion and $\Omega$ is a diagonal matrix.
- The weighted least squares (WLS) estimator with a diagonal weighting matrix $W$ can be obtained by minimizing

$$
\widehat{\boldsymbol{\beta}}^{W L S}=\underset{\beta \in \Theta}{\operatorname{argmin}}(\boldsymbol{y}-\boldsymbol{x} \boldsymbol{\beta})^{\top} W(\boldsymbol{y}-\boldsymbol{x} \boldsymbol{\beta}) .
$$

- Therefore, OLS is a special case of WLS with $W=I_{n}$, which suggests that each observation has the same weight.


## Review: Vairance-covariance matrix of WLS and OLS

- Taking the derivative w.r.t. $\beta$ we have

$$
\widehat{\boldsymbol{\beta}}^{W L S}=\left(\boldsymbol{x}^{\top} W \boldsymbol{x}\right)^{-1} \boldsymbol{x}^{\top} W \boldsymbol{y}=\boldsymbol{\beta}+\left(\boldsymbol{x}^{\top} W \boldsymbol{x}\right)^{-1} \boldsymbol{x}^{T} W \mu
$$

- Remark: Under Gauss-Markov assumptions 1-4, given $W$ is a positive semidefinite matrix, $\widehat{\boldsymbol{\beta}}^{W L S}$ is unbiased and consistent as $n \longrightarrow \infty$
- The $\operatorname{Var}\left(\widehat{\boldsymbol{\beta}}^{W L S}\right)$ is in the "sandwich" form with

$$
\operatorname{Var}\left(\widehat{\boldsymbol{\beta}}^{W L S}\right)=\left(\boldsymbol{x}^{\top} W \boldsymbol{x}\right)^{-1} \boldsymbol{x}^{\top} W \Omega W^{\top} \boldsymbol{x}\left(\boldsymbol{x}^{\top} W \boldsymbol{x}\right)^{-1}
$$

- If $W=I_{n}, \widehat{\boldsymbol{\beta}}^{W L S}$ becomes $\widehat{\boldsymbol{\beta}}^{O L S}$ and

$$
\operatorname{Var}\left(\widehat{\boldsymbol{\beta}}^{O L S}\right)=\left(\boldsymbol{x}^{\top} \boldsymbol{x}\right)^{-1} \boldsymbol{x}^{\top} \Omega \boldsymbol{x}\left(\boldsymbol{x}^{\top} \boldsymbol{x}\right)^{-1}
$$

## Review: Generalized least squares (GLS)

- Question: As all $\widehat{\boldsymbol{\beta}}^{W L S}$ unbiased and consistent, among them, which one is the most efficient, i.e., has the lowest variance? In other words, which $W$ should we use to obtain the BLUE estimator?
- Intuition: Assign lower weights to higher variance error terms and higher weights to lower variance error terms!
- Solution: Each observation should be given a weight proportional to the inverse of the variance of its error term. Using $\Omega^{-1}$ as the weighting matrix, we have

$$
\begin{aligned}
& \operatorname{Var}\left(\widehat{\boldsymbol{\beta}}^{\mathrm{GLS}}\right)=\left(\boldsymbol{x}^{\top} \Omega^{-1} \boldsymbol{x}\right)^{-1} \boldsymbol{x}^{\top} \Omega^{-1} \Omega \Omega^{-1} \boldsymbol{x}^{\top}\left(\boldsymbol{x}^{\top} \Omega^{-1} \boldsymbol{x}\right)^{-1} \\
& =\left(\boldsymbol{x}^{\top} \Omega^{-1} \boldsymbol{x}\right)^{-1}
\end{aligned}
$$

## Review: A simple proof of the GLS's efficiency

- To show GLS is BLUE estimator, we only need to show, for all positive semidefinite weighting matrix $W$,

$$
\boldsymbol{x}^{\top} \Omega^{-1} \boldsymbol{x}-\boldsymbol{x}^{\top} W \boldsymbol{x}\left(\boldsymbol{x}^{\top} W \Omega W^{\top} \boldsymbol{x}\right)^{-1} \boldsymbol{x}^{\top} W \boldsymbol{x}
$$

is positive semidefinite.

## Proof.

$$
\begin{aligned}
& \boldsymbol{x}^{\top} \Omega^{-1} \boldsymbol{x}-\boldsymbol{x}^{\top} W \boldsymbol{x}\left(\boldsymbol{x}^{\top} W \Omega W^{\top} \boldsymbol{x}\right)^{-1} \boldsymbol{x}^{\top} W \boldsymbol{x} \\
& =\boldsymbol{x}^{\top}\left[\Omega^{-1}-W \boldsymbol{x}\left(\boldsymbol{x}^{\top} W \Omega W^{\top} \boldsymbol{x}\right)^{-1} \boldsymbol{x}^{\top} W\right] \boldsymbol{x} \\
& =\boldsymbol{x}^{\top} \Omega^{-1 / 2}\left[I_{n}-W \boldsymbol{x} \Omega^{1 / 2}\left(\boldsymbol{x}^{\top} W \Omega W^{\top} \boldsymbol{x}\right)^{-1} \Omega^{1 / 2} \boldsymbol{x}^{\top} W\right] \Omega^{-1 / 2} \boldsymbol{x} \\
& =\boldsymbol{x}^{\top} \Omega^{-1 / 2}\left[I_{n}-W \boldsymbol{x}\left(\boldsymbol{x}^{\top} W W^{\top} \boldsymbol{x}\right)^{-1} \boldsymbol{x}^{\top} W\right] \Omega^{-1 / 2} \boldsymbol{x}
\end{aligned}
$$

## Review: A simple proof of the GLS's efficiency

## Proof.

- Let $\boldsymbol{x}^{*}=W \boldsymbol{x}$. We have

$$
W \boldsymbol{x}\left(\boldsymbol{x}^{\top} W W^{\top} \boldsymbol{x}\right)^{-1} \boldsymbol{x}^{\top} W=\boldsymbol{x}^{*}\left(\boldsymbol{x}^{* \top} \boldsymbol{x}^{*}\right)^{-1} \boldsymbol{x}^{* \top}=P_{x^{*}}
$$

- $P_{x^{*}}$ is an idempotent projection matrix!!! $M_{x^{*}}=I_{n}-P_{x^{*}}$ is also an idempotent projection matrix!
- This implies

$$
\begin{aligned}
& \boldsymbol{x}^{\top} \Omega^{-1 / 2}\left[I_{n}-W \boldsymbol{x}\left(\boldsymbol{x}^{\top} W W^{\top} \boldsymbol{x}\right)^{-1} \boldsymbol{x}^{\top} W\right] \Omega^{-1 / 2} \boldsymbol{x} \\
& =\boldsymbol{x}^{\top} \Omega^{-1 / 2} M_{x^{*}} \Omega^{-1 / 2} \boldsymbol{x}=\boldsymbol{x}^{\top} \Omega^{-1 / 2} M_{x^{*}} M_{x^{*}} \Omega^{-1 / 2} \boldsymbol{x}=\boldsymbol{c}^{\top} \boldsymbol{c}
\end{aligned}
$$

where $\boldsymbol{c}=M_{x^{*}} \Omega^{-1 / 2} \boldsymbol{x}$.
$\mathcal{Q} . \mathcal{E} . \mathcal{D}$.

## Topic 3: GLS estimator for the random effect model

- Recall, we assume

$$
\Omega=E\left(\boldsymbol{u}_{\boldsymbol{i}} \boldsymbol{u}_{\boldsymbol{i}}^{\top}\right)=E\left[\left(\boldsymbol{e} \alpha_{i}+\varepsilon_{\boldsymbol{i}}\right)\left(\boldsymbol{e} \alpha_{i}+\boldsymbol{\varepsilon}_{\boldsymbol{i}}\right)^{\top}\right]=\sigma_{\alpha}^{2} \boldsymbol{e}^{\top}+\sigma_{\varepsilon}^{2} I_{T}
$$

- Closely following our discussion in GLS review for the classical linear regression model, if the variance covariance matrix $\Omega$ is known, the GLS estimator of the $\gamma$ for the random effect model (2) is

$$
\widehat{\gamma}^{G L S}=\left(\sum_{i=1}^{n} \boldsymbol{X}_{\boldsymbol{i}}^{\top} \Omega^{-1} \boldsymbol{X}_{\boldsymbol{i}}\right)\left(\sum_{i=1}^{n} \boldsymbol{X}_{\boldsymbol{i}}^{\top} \Omega^{-1} \boldsymbol{y}_{\boldsymbol{i}}\right) .
$$

- Under Assumptions RE, $\widehat{\gamma}^{G L S}$ is BLUE estimator!
- At home: Derive $\widehat{\gamma}^{G L S}$ and demonstrate that it is BLUE estimator. We will show this in the next lecture in a nutshell.


[^0]:    ${ }^{1}$ The next few slides provide a review of prior-knowledge on GLS.

