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Topic 3: A linear unobserved effects panel data models:
error-component model

A generalized setup for a linear unobserved (individual) effects panel
data model consist of three components

yit = β⊤xit + uit , 1 ≤ i ≤ n, 1 ≤ t ≤ T (1)

uit = αi + λt + ε it ,

αi is the individual effect

λt is the time effect

ε it is the idiosyncratic error term
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Topic 3: Random effects assumptions

We make the following assumptions to support the model (1).

Assumptions RE: The errors terms uit = αi + λt + ε it are i.i.d. for
all 1 ≤ i ≤ n, 1 ≤ t ≤ T with

1 E (αi ) = E (λt) = E (εit) = 0

2 E (αiλt) = E (λt εit) = E (αi εit) = 0

3 E (αiαj ) =

{
σ2

α , i = j

0, i ̸= j

4 E (λtλs) =

{
σ2

λ , i = j

0, i ̸= j

5 E (εit εjs) =

{
σ2

ε , t = s, i = j

0, otherwise

6 E (αix
⊤
it ) = E (λtx

⊤
it ) = E (εitx

⊤
it ) = 0

Instructor: Chaoyi (NJE & MNB) Panel Data April 5, 2023 3 / 14



Topic 3: Remarks on Assumptions RE

Assumptions RE implies αi is uncorrelated with xit .

Under Assumptions RE, the variance of yit conditional on xit is equal
to:

σ2
y |x = σ2

u = σ2
α + σ2

λ + σ2
ε

Assumptions RE can be extended to non-zero-mean unobserved
individual effect, α∗

i , with E (α∗
i ) = µ. Then, we can define

α∗
i = µ + αi and the new error-component model is

yit = µ + β⊤xit + uit , 1 ≤ i ≤ n, 1 ≤ t ≤ T

uit = αi + λt + ε it ,

W.l.o.g., in the following, for simplicity, we do not introduce any time
effects and consider a simple random effect model with a
non-zero-mean αi , where uit = αi + ε it .
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Topic 3: A vector form of a random effect model

For the random effect model

yit = µ + β⊤xit + uit , 1 ≤ i ≤ n, 1 ≤ t ≤ T

uit = αi + ε it ,

we can use the following vectorial expression to redefine it

y i
(T×1)

= X i
(T×k+1)

γ
(k+1×1)

+ ui
(T×1)

, (2)

ui
(T×1)

= e
(T×1)

αi + εi
(T×1)

(3)

X i
(k+1×1)

=

(
e

(T×1)
, xi
(T×k)

)
γ

(k+1×1)

=
(

µ, β⊤
)⊤
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Topic 3: Variance-covariance matrix of errors

Under Assumptions RE, the variance-covariance matrix of ui is equal
to

Ω = E (uiui
⊤) = E

[
(eαi + εi ) (eαi + εi )

⊤
]
= σ2

αee⊤ + σ2
ε IT

Ω
T×T

=


σ2

α + σ2
ε σ2

α . . . σ2
α

σ2
α σ2

α + σ2
ε . . . σ2

α

. . . . . . . . . . . .
σ2

α σ2
α . . . σ2

α + σ2
ε


The off-diagonal elements are non-zero due to the presence of αi

produces a correlation among errors of the same cross-sectional unit
(autocorrelation)!
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Topic 3: Variance-covariance matrix of errors

The inverse matrix of Ω is

Ω−1 =
1

σ2
ε

[
IT −

(
σ2

α

σ2
ε + Tσ2

α

)
ee⊤

]

Let u
(nT×1)

=
[
u1

⊤,u2
⊤, . . . ,un

⊤]⊤, we have

Ω(u)
(nT×nT )

= E (uu⊤) = Ω ⊗ In

Ω(u) =


Ω 0 . . . 0
0 Ω 0 0

. . . . . . . . . . . .
0 0 . . . Ω
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Topic 3: Within transformation in random effects model

In the last lecture, we used an idempotent matrix Q = IT − 1
T eeT to

eliminate the individual effect αi in the fixed effect model. Similarly,
this technique can be used to obtain the within-group (or LSDV)
estimator in the random effect model.

Under Assumptions RE, where αi is random and correlated with xit ,
the within-group estimator is unbiased and consistent as either n, or
T, or both tend to infinity.

However, the within-group estimator is not the Best Linear Unbiased
Estimator (BLUE).

In this case, the is the Generalized Least Squares (GLS) estimator is
the BLUE estimator. 1

1The next few slides provide a review of prior-knowledge on GLS.
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Review: Weighted least squares (WLS)

Consider the classical linear regression model as studied in Lecture 1:

y = xβ + µ

Assume that Gauss-Markov Assumptions 1-4 hold, but Assumption 5
does not hold (i.e., we assume heteroscedastic errors). Specifically,
we assume E (µµ⊤) = Ω, where Ω may depend on i or be correlated
with xi . However, we assume there is no autocorrealtion and Ω is a
diagonal matrix.

The weighted least squares (WLS) estimator with a diagonal
weighting matrix W can be obtained by minimizing

β̂
WLS

= argmin
β∈Θ

(y − xβ)⊤W (y − xβ).

Therefore, OLS is a special case of WLS with W = In, which suggests
that each observation has the same weight.

Instructor: Chaoyi (NJE & MNB) Panel Data April 5, 2023 9 / 14



Review: Vairance-covariance matrix of WLS and OLS

Taking the derivative w.r.t. β we have

β̂
WLS

=
(
x⊤W x

)−1
xTW y = β +

(
x⊤W x

)−1
xTWµ

Remark: Under Gauss-Markov assumptions 1-4, given W is a positive

semidefinite matrix, β̂
WLS

is unbiased and consistent as n −→ ∞

The Var(β̂
WLS

) is in the “sandwich” form with

Var(β̂
WLS

) =
(
x⊤W x

)−1
x⊤WΩW⊤x

(
x⊤W x

)−1

If W = In, β̂
WLS

becomes β̂
OLS

and

Var(β̂
OLS

) =
(
x⊤x

)−1
x⊤Ωx

(
x⊤x

)−1
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Review: Generalized least squares (GLS)

Question: As all β̂
WLS

unbiased and consistent, among them, which
one is the most efficient, i.e., has the lowest variance? In other words,
which W should we use to obtain the BLUE estimator?

Intuition: Assign lower weights to higher variance error terms and
higher weights to lower variance error terms!

Solution: Each observation should be given a weight proportional to
the inverse of the variance of its error term. Using Ω−1 as the
weighting matrix, we have

Var(β̂
GLS

) =
(
x⊤Ω−1x

)−1
x⊤Ω−1ΩΩ−1x⊤

(
x⊤Ω−1x

)−1

=
(
x⊤Ω−1x

)−1
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Review: A simple proof of the GLS’s efficiency

To show GLS is BLUE estimator, we only need to show, for all
positive semidefinite weighting matrix W ,

x⊤Ω−1x − x⊤W x
(
x⊤WΩW⊤x

)−1
x⊤W x

is positive semidefinite.

Proof.

x⊤Ω−1x − x⊤W x
(
x⊤WΩW⊤x

)−1
x⊤W x

= x⊤
[

Ω−1 −W x
(
x⊤WΩW⊤x

)−1
x⊤W

]
x

= x⊤Ω−1/2
[
In −W xΩ1/2

(
x⊤WΩW⊤x

)−1
Ω1/2x⊤W

]
Ω−1/2x

= x⊤Ω−1/2
[
In −W x

(
x⊤WW⊤x

)−1
x⊤W

]
Ω−1/2x
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Review: A simple proof of the GLS’s efficiency

Proof.

Let x∗ = W x . We have

W x
(
x⊤WW⊤x

)−1
x⊤W = x∗(x∗⊤x∗)−1x∗⊤ = Px∗ .

Px∗ is an idempotent projection matrix!!! Mx∗ = In − Px∗ is also an
idempotent projection matrix!

This implies

x⊤Ω−1/2
[
In −W x

(
x⊤WW⊤x

)−1
x⊤W

]
Ω−1/2x

= x⊤Ω−1/2Mx∗Ω−1/2x = x⊤Ω−1/2Mx∗Mx∗Ω−1/2x = c⊤c ,

where c = Mx∗Ω−1/2x .
Q.E .D.
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Topic 3: GLS estimator for the random effect model

Recall, we assume

Ω = E (uiui
⊤) = E

[
(eαi + εi ) (eαi + εi )

⊤
]
= σ2

αee⊤ + σ2
ε IT .

Closely following our discussion in GLS review for the classical linear
regression model, if the variance covariance matrix Ω is known, the
GLS estimator of the γ for the random effect model (2) is

γ̂GLS =

(
n

∑
i=1

Xi
⊤Ω−1Xi

)(
n

∑
i=1

Xi
⊤Ω−1yi

)
.

Under Assumptions RE, γ̂GLS is BLUE estimator!

At home: Derive γ̂GLS and demonstrate that it is BLUE estimator.
We will show this in the next lecture in a nutshell.
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