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Lecture outline

Last lecture, we learned, under four assumptions, the OLS estimators are
unbiased. We also studied the difference between homoskedastic error and
heteroskedastic error. Today, we will

derive the variance of β̂1

estimate the error variance

study regression through the origin and regression on a constant

summary for topic four: The simple Regression Model
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Simple linear regression model: sample variance of the
OLS estimators

At the end of the last lecture, we showed that, under assumptions
1-5, the variance of β̂1 is

Var(β̂1) =
σ2

∑n
i=1(xi − x̄)2

Now, let’s go through the derivation formally.

Recall, from last lecture,

β̂1 =
∑n

i=1

(
xi − x̄i

)(
β1(Xi − X̄ ) + (µi − µ̄)

)
∑n

i=1

(
xi − x̄i

)(
xi − x̄i

)
= β1 +

∑n
i=1

(
xi − x̄i

)
µi

∑n
i=1

(
xi − x̄i

)(
xi − x̄i

)
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Simple linear regression model: sample variance of the
OLS estimators

Hence,

Var(β̂1) = Var(β1 +
∑n

i=1

(
xi − x̄i

)
µi

∑n
i=1

(
xi − x̄i

)(
xi − x̄i

) ) = Var(
∑n

i=1

(
xi − x̄i

)
µi

∑n
i=1

(
xi − x̄i

)(
xi − x̄i

) )
=

( 1

∑n
i=1

(
xi − x̄i

)2 )2Var( n

∑
i=1

(
xi − x̄i

)
µi )

Note that the µi are independent random variables across i , which
implies the variance of the sum is the sum of the variances. Hence,

=
( 1

∑n
i=1

(
xi − x̄i

)2 )2( n

∑
i=1

(
xi − x̄i

)2
Var(µi )

)
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Simple linear regression model: sample variance of the
OLS estimators

If the error is heteroskedastic , we cannot simplify further due to the
fact that µi changes as xi changes.

However, with assumption 5 (the homoskedastic error assumption),
Var(µi ) = σ2 , which is a constant for all i . Therefore, we can
simplify the variance as

Var(β̂1) =
( 1

∑n
i=1

(
xi − x̄i

)2 )2σ2
( n

∑
i=1

(
xi − x̄i

)2)
=

σ2

∑n
i=1(xi − x̄)2

From the above expression, we can see the variance depends on the
error variance, σ2, and the totoal variation in xi , the SSTx .
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Simple linear regression model: sample variance of the
OLS estimators

Relationships and intuitions:

1. The larger the error variance, the larger is Var(β̂1). Intuitively, more
variation in the unobservables affecting y makes it more difficult to
precisely estimate β1.

2. As the variability in the xi increases, the variance of β̂1 decreases.
Intuitively, the more spread out is the sample of independent variables,
the easier it is to trace out the relationship between E (y |x) and x .
Therefore, the easier it is to estimate β1. 1 decreases.
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Simple linear regression model: estimate error variance

With the data, we can compute SSTx .
However, we do not know σ2 in general.
To get the variance Var(β̂1), we need to estimate the error variance
first.

yi = β0 + β1xi + µi

yi = β̂0 + β̂1xi + µ̂i

The first equation is the the population model in terms of a randomly
sampled observation
The second express yi in terms of its fitted value and residual
Comparing two equations, we see that the error shows up in the
equation containing the population parameters
On the other hand, the residuals show up in the estimated equation
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Simple linear regression model: estimate error variance

If we know the error µi , then we can use 1
n ∑n

i=1 µ2
i as an unbiased

estimator for Var(µ) = σ2.

Unfortunately, this is not a true estimator, because we do not observe
the errors µi . But, the good news is we do have estimates of the µi ,
the OLS residuals µ̂i .

However, if we simply replace µi with µ̂i in 1
n ∑n

i=1 µ2
i , the estimator

( 1n ∑n
i=1 µ̂2

i ) turns out to be a biased estimator. (Prove it at home).

Intuitively, the biasedness is essentially because it does not account
for two restrictions that must be satisfied by the OLS residuals.

n

∑
i

µ̂i = 0
n

∑
i

xi µ̂i = 0

Why the two restrictions matter? if we know n− 2 of the residuals.
Then, based on the above two equation, we can always get the other
two residuals (2 unknown, 2 equations).Thus, there are only n− 2
degrees of freedom in µ̂i istead of n degrees of freedom in µi .
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Simple linear regression model: estimate error variance

Therefore, an unbiased estimator of σ2 that we will use makes a
degrees of freedom adjustment is

σ̂2 =
1

(n− 2)

2

∑
i=1

µ̂i =
SSR

(n− 2)

Then, by replacing σ2 by σ̂2, we can show that σ̂2

∑n
i=1(xi−x̄)2

is an

unbiased estimator of Var(β̂1)

se(β̂1) =
σ̂√

∑n
i=1(xi−x̄)2

is the estimator of the standard deviations of

β̂1, namely, standard error of β̂1.

Similarly, we can obtain the unbiased estimator Var(β̂0) and the
standard error of β̂0
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Simple linear regression model: study regression through
the origin and regression on a constant

Now, let’s talk about a special case of the simple linear regression
model by imposing the restriction that, when x = 0, the expected
value of y is zero. Hence, The population model is yi = β1xi + µi .

Note that the population line has to be through the origin point
(0, 0).

Why this is reasonable and useful? Example: if income (x) is zero,
then income tax revenues (y) must also be zero.

To estimate the slope (we do not have intercept in this case), the
OLS method requires us to solve the following minimization plroblem

Min
β̂1

n

∑
i=1

(yi − β̂1xi )
2
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Simple linear regression model: study regression through
the origin and regression on a constant

Differentiate the objective function w.r.t β̂1, we have the FOC

n

∑
i=1

xi (yi − β̂1xi ) = 0

Thus, the OLS estimator of β1

β̂1 =
∑n

i=1 xiyi

∑n
i=1 x

2
i

The residuals are µ̂i = yi − β̂1xi and the R2 = 1− ∑n
i=1 µ̂i
SST

Note that, in this typical case, SST = ∑n
i=1(yi − ȳ)2 = ∑n

i=1 y
2
i
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Simple linear regression model: study regression through
the origin and regression on a constant

Another interesting problem is what happens if we only regress on a
constant?

That is, we set the slope to zero (which means we need not even have
an x) and estimate an intercept only?

The answer is simple: the estimator of the intercept (β0) is ȳ .

This fact is usually shown in basic statistics, where it is shown that
the constant that produces the smallest sum of squared deviations is
always the sample average.
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Simple linear regression model: summary

In this topic, we have introduced the simple linear regression model.

We have learned using OLS method to derive the estimators of the
slope and the intercept parameters.

We have demonstrated the algebra of the OLS regression line,
including computation of fitted values and residuals, and the
obtaining of predicted changes in the dependent variable for a given
change in the independent variable.

We have discussed two issues of practical importance: (1) change the
units of measurement (2) the use of the natural log to model
nonlinearity.
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Simple linear regression model: summary

We showed that under four assumptions, the OLS estimators are
unbiased. (The expected value of the OLS estimator equals to the
true parameter)

By imposing one more assumption, ”homoskedastic error”, we showed
the simpler expressions of the variance of the OLS estimators. As we
saw, the variance of the slope estimator β̂1 increases as the error
variance increases, and it decreases when there is more sample
variation in the independent variable.

We showed an unbiased estimator of the σ2, σ̂2 = SSE
(n−2) .Then, we use

σ̂2 to get the unbiased estimator of Var(β̂1).

At last, we briefly discussed regression through the origin and
regression on a constant
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