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Topic 3: A review on the random effect model and the
GLS estimator
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Under Assumptions RE, γ̂GLS is BLUE estimator!
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Topic 3: Another form of the inverse of the
variance-covariance matrix

Note that we can rewrite Ω−1 as
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Topic 3: GLS as a weighted estimator of the LSDV and
between estimator

The between-group estimator or between estimator β̂
BE

is the OLS
estimator obtained in the model ȳi = c x̄i β + ui :
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is called the between-group estimator because it ignores
variation within the group.
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Topic 3: LSDV, Between estimator and GLS estimator

If ψ −→ 0, GLS estimator converges to LSDV (within-group)
estimator

β̂
GLS p−→

ψ−→0
β̂
LSDV

If ψ −→ 1, GLS estimator converges to pooled OLS estimator

β̂
GLS p−→

ψ−→1
β̂
pooled

Intuition: The parameter ψ = σ2
ε

σ2
ε +Tσ2

α
measures the weight given to

the between-group variation.

This variation is completely ignored in the LSDV (or fixed-effects
model) procedure (ψ = 0).
In the OLS procedure (pooled model), between-group variation is
considered a full weight ψ = 1.
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Topic 3: A new view on random effect

A fun fact: treating αi as random coefficients provide an intermediate
solution between treating them all as different (fixed effects, LSDV)
and treating them all as equal (pooled model).
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Topic 3: LSDV and GLS more interpretation

As ψ = σ2
ε

σ2
ε +Tσ2

α
, we have lim

T−→∞
ψ = 0

Therefore, when T −→ ∞, the GLS estimator converges to the LSDV
estimator !

Interpretation:
1 When T −→ ∞, we have an infinite number of observations for each i .
2 Therefore, we can consider each αi as a random variable which has

been drawn once and forever
3 For each i , we assume that they are just like fixed parameters
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Topic 3: Asymptotic variance-covariance matrix for GLS

Under Assumptions RE, the asymptotic variance-covariance matrix
of the GLS estimator is given by:
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. As ψ is

positive by definition, Var(β̂
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) is a positive
semidefinite matrix.
=⇒ LSDV is not BLUE!
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Topic 3: Feasible GLS

Given σ2
ε and σ2

α , we can estimate the random effect model by GLS.

However, in reality, they are unknown. In this case, we can use a
two-step GLS estimation procedure - called feasible GLS.

1 In the first step, we estimate the variance components using some
consistent estimators.

2 In the second step, we substitute their estimated values into
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.

Instructor: Chaoyi (NJE & MNB) Panel Data April 11, 2023 9 / 12



Topic 3: σ2
ε and σ2

α estimators

We can use the within and between-group residuals to estimate the
first-step σ2

ε and σ2
α as
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Topic 3: Remarks on feasible GLS

Remark on large sample: When the sample size is large (either
n −→ ∞, or T −→ ∞, or both), the two-step GLS estimator will
have the same asymptotic efficiency as the GLS procedure with
known variance components.

Remark on small sample: Even for moderate sample size (for T ≥ 3,
n− (K + 1) ≥ 9 or for T > 2, , n− (K + 1) ≥ 10), the two-step
procedure is still more efficient than the LSDV estimator in the sense
that the difference between the covariance matrices of the covariance
estimator and the two-step estimator is nonnegative definite
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A Stata example: Random effect regression

xtreg lrgdpnagrowth lccongrowth lckgrowth lpopgrowth,

re robust
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