Empirical Panel Data: Lecture 6

INSTRUCTOR: CHAOYI CHEN NJE & MNB

April 11, 2023

@copyright Chaoyi Chen (NJE & MNB). All rights reserved. Please do not distribute without express written consent.

Instructor:	Chaoyi ((NJE &	MNB)
-------------	----------	--------	------

Topic 3: A review on the random effect model and the GLS estimator

$$\mathbf{y}_{i} = \mathbf{X}_{i} \quad \mathbf{\gamma}_{i} + \mathbf{u}_{i},$$

$$\mathbf{u}_{i} = \mathbf{e}_{(T \times 1)} \alpha_{i} + \mathbf{\varepsilon}_{i},$$

$$(T \times 1) = (T \times 1)^{\alpha} (T \times 1)^{\alpha},$$

$$\mathbf{x}_{i} = \left(\mathbf{e}_{(T \times 1)}, \mathbf{x}_{i}, \mathbf{x}_{i}, \mathbf{\gamma}_{i}\right) = \left(\mu, \boldsymbol{\beta}^{\top}\right)^{\top},$$

$$\Omega = E(\mathbf{u}_{i}\mathbf{u}_{i}^{\top}) = E\left[\left(\mathbf{e}\alpha_{i} + \mathbf{\varepsilon}_{i}\right)\left(\mathbf{e}\alpha_{i} + \mathbf{\varepsilon}_{i}\right)^{\top}\right] = \sigma_{\alpha}^{2}\mathbf{e}\mathbf{e}^{\top} + \sigma_{\varepsilon}^{2}I_{T},$$

$$\widehat{\gamma}^{GLS} = \left(\sum_{i=1}^{n} \mathbf{X}_{i}^{\top} \Omega^{-1} \mathbf{X}_{i}\right)^{-1} \left(\sum_{i=1}^{n} \mathbf{X}_{i}^{\top} \Omega^{-1} \mathbf{y}_{i}\right).$$

 \bullet Under Assumptions RE, $\widehat{\gamma}^{\textit{GLS}}$ is BLUE estimator! ,

Topic 3: Another form of the inverse of the variance-covariance matrix

• Note that we can rewrite Ω^{-1} as

$$\Omega^{-1} = \frac{1}{\sigma_{\varepsilon}^{2}} \left(Q + \psi \frac{1}{T} e e^{\top} \right)$$

•
$$Q = (I_T - ee^{ op} / T)$$
 and $\psi = rac{\sigma_e^2}{\sigma_e^2 + T\sigma_{lpha}^2}$

• Therefore, given Ω^{-1} , we have

$$\begin{bmatrix} \widehat{\mu}^{GLS} \\ \widehat{\beta}^{GLS} \end{bmatrix} = \begin{bmatrix} \psi nT & \psi T \sum_{i=1}^{n} \bar{x}_{i} \\ \psi T \sum_{i=1}^{n} \bar{x}_{i} & \sum_{i=1}^{n} X_{i}^{\top} Q X_{i} + \psi T \sum_{i=1}^{n} \bar{x}_{i} \bar{x}_{i}^{\top} \end{bmatrix}^{-1} \times \begin{bmatrix} \psi nT \bar{y} \\ \sum_{i=1}^{n} X_{i}^{\top} Q X_{i} + \psi^{\top} T \sum_{i=1}^{n} \bar{x}_{i} \bar{y} \end{bmatrix}$$

Topic 3: GLS as a weighted estimator of the LSDV and between estimator

• The between-group estimator or **between estimator** $\hat{\beta}^{BE}$ is the OLS estimator obtained in the model $\bar{y}_i = c\bar{x}_i\beta + u_i$:

$$\Longrightarrow \widehat{\boldsymbol{\beta}}^{BE} = \left(\sum_{i=1}^{n} \left(\bar{\boldsymbol{x}}_{i} - \bar{\boldsymbol{x}}\right) \left(\bar{\boldsymbol{x}}_{i} - \bar{\boldsymbol{x}}\right)^{\top}\right)^{-1} \left(\sum_{i=1}^{n} \left(\bar{\boldsymbol{x}}_{i} - \bar{\boldsymbol{x}}\right) \left(\bar{\boldsymbol{y}}_{i} - \bar{\boldsymbol{y}}\right)\right)$$

• $\hat{\beta}^{BE}$ is called the between-group estimator because it **ignores** variation within the group.

$$\begin{aligned} \text{Recall:} \ \widehat{\boldsymbol{\beta}}^{GLS} &= \left(\frac{1}{T}\sum_{i=1}^{n}\boldsymbol{X}_{i}^{\top}\boldsymbol{Q}\boldsymbol{X}_{i} + \psi\sum_{i=1}^{n}\left(\bar{\boldsymbol{x}}_{i} - \bar{\boldsymbol{x}}\right)\left(\bar{\boldsymbol{x}}_{i} - \bar{\boldsymbol{x}}\right)^{\top}\right)^{-1} \\ &\times \left(\frac{1}{T}\sum_{i=1}^{n}\boldsymbol{X}_{i}^{\top}\boldsymbol{Q}\boldsymbol{y}_{i} + \psi\sum_{i=1}^{n}\left(\bar{\boldsymbol{x}}_{i} - \bar{\boldsymbol{x}}\right)\left(\bar{\boldsymbol{y}}_{i} - \bar{\boldsymbol{y}}\right)\right) \end{aligned}$$

$$\overset{GLS}{\text{ is a weighted average of } \widehat{\boldsymbol{\beta}}^{LSDV} \text{ and } \widehat{\boldsymbol{\beta}}^{BE} \end{aligned}$$

• $\widehat{\boldsymbol{\beta}}$

Topic 3: LSDV, Between estimator and GLS estimator

• If $\psi \longrightarrow 0$, GLS estimator converges to LSDV (within-group) estimator

$$\widehat{\beta}^{GLS} \xrightarrow[\psi \longrightarrow 0]{p} \widehat{\beta}^{LSDV}$$

 $\bullet~\mbox{If}~\psi\longrightarrow 1,~\mbox{GLS}$ estimator converges to pooled OLS estimator

$$\widehat{\beta}^{GLS} \underset{\psi \longrightarrow 1}{\overset{p}{\longrightarrow}} \widehat{\beta}^{pooled}$$

- Intuition: The parameter $\psi = \frac{\sigma_{\epsilon}^2}{\sigma_{\epsilon}^2 + T \sigma_{\alpha}^2}$ measures the weight given to the between-group variation.
 - This variation is completely ignored in the LSDV (or fixed-effects model) procedure ($\psi = 0$).
 - In the OLS procedure (pooled model), between-group variation is considered a full weight $\psi = 1$.

Topic 3: A new view on random effect

 A fun fact: treating α_i as random coefficients provide an intermediate solution between treating them all as different (fixed effects, LSDV) and treating them all as equal (pooled model).

6 / 12

• As
$$\psi = \frac{\sigma_{\varepsilon}^2}{\sigma_{\varepsilon}^2 + T \sigma_{\alpha}^2}$$
, we have $\lim_{T \longrightarrow \infty} \psi = 0$

• Therefore, when $T \longrightarrow \infty$, the GLS estimator converges to the LSDV estimator !

• Interpretation:

- **(**) When $T \rightarrow \infty$, we have an infinite number of observations for each *i*.
- Contract Construction (α) Therefore, we can consider each α_i as a random variable which has been drawn once and forever
- So For each *i*, we assume that they are just like fixed parameters

 Under Assumptions RE, the asymptotic variance-covariance matrix of the GLS estimator is given by:

$$\operatorname{Var}(\widehat{\beta}^{GLS}) = \sigma_{\varepsilon}^{2} \left(\sum_{i=1}^{n} \mathbf{X}_{i}^{\top} Q \mathbf{X}_{i} + \psi T \sum_{i=1}^{n} \left(\bar{\mathbf{x}}_{i} - \bar{\mathbf{x}} \right) \left(\bar{\mathbf{x}}_{i} - \bar{\mathbf{x}} \right)^{\top} \right)^{-1}$$

• Remark: Note that $\operatorname{Var}(\widehat{\beta}^{LSDV}) = \sigma_{\varepsilon}^{2} \left(\sum_{i=1}^{n} X_{i}^{\top} Q X_{i} \right)^{-1}$. As ψ is positive by definition, $\operatorname{Var}(\widehat{\beta}^{LSDV}) - \operatorname{Var}(\widehat{\beta}^{GLS})$ is a positive semidefinite matrix. \implies LSDV is not BLUE!

- Given σ_{ε}^2 and σ_{α}^2 , we can estimate the random effect model by GLS.
- However, in reality, they are unknown. In this case, we can use a two-step GLS estimation procedure called feasible GLS.
 - In the first step, we estimate the variance components using some consistent estimators.
 - In the second step, we substitute their estimated values into

$$\widehat{\gamma}^{GLS} = \left(\sum_{i=1}^{n} \mathbf{X}_{i}^{\top} \widehat{\Omega}^{-1} \mathbf{X}_{i}\right)^{-1} \left(\sum_{i=1}^{n} \mathbf{X}_{i}^{\top} \widehat{\Omega}^{-1} \mathbf{y}_{i}\right).$$

Topic 3: σ_{ε}^2 and σ_{α}^2 estimators

• We can use the within and between-group residuals to estimate the first-step σ_{ϵ}^2 and σ_{α}^2 as

$$\sigma_{\varepsilon}^{2} = \frac{\sum_{i=1}^{n} \sum_{t=1}^{T} \left(\left(y_{it} - \bar{y}_{i} \right) - \left(x_{it} - \bar{x}_{i} \right) \widehat{\beta}^{LSDV} \right)^{2}}{n(T-1) - K}$$
$$\widehat{\sigma}_{\alpha}^{2} = \frac{\sum_{i=1}^{n} \left(\bar{y}_{i} - \widehat{\mu}^{BE} - \bar{x}_{i} \widehat{\beta}^{BE} \right)^{2}}{n-K-1} - \widehat{\sigma}_{\varepsilon}^{2}$$

• Then, we can compute the estimate of ψ as $\hat{\psi} = \frac{\hat{\sigma}_{\varepsilon}^2}{\hat{\sigma}_{\varepsilon}^2 + T\hat{\sigma}_{\alpha}^2}$ and the estimate of Ω inverse as

$$\widehat{\Omega}^{-1} = \frac{1}{\widehat{\sigma}_{\varepsilon}^{2}} \left(Q + \widehat{\psi} \frac{1}{T} \boldsymbol{e} \boldsymbol{e}^{\top} \right)$$

- Remark on large sample: When the sample size is large (either n → ∞, or T → ∞, or both), the two-step GLS estimator will have the same asymptotic efficiency as the GLS procedure with known variance components.
- Remark on small sample: Even for moderate sample size (for $T \ge 3$, $n (K + 1) \ge 9$ or for T > 2, , $n (K + 1) \ge 10$), the two-step procedure is still more efficient than the LSDV estimator in the sense that the difference between the covariance matrices of the covariance estimator and the two-step estimator is nonnegative definite

A Stata example: Random effect regression

 xtreg lrgdpnagrowth lccongrowth lckgrowth lpopgrowth, re robust

Random-effects	s GLS regress:	ion		Number o	of obs	-	9,229
Group variable: country1			Number o	of groups	s =	180	
R-sq:				Obs per	group:		
within =	= 0.2911				mi	in =	24
between =	= 0.6515				at	7g =	51.3
overall = 0.3089					ma	x =	64
				Wald chi	12 (3)	-	145.53
corr(u_i, X)	= 0 (assumed	d)		Prob > c	hi2	=	0.0000
		(Std. Err. Robust	. adjust	ed for 180) cluster	cs in	countryl)
lrgdpna_gr~h	Coef.	(Std. Err. Robust Std. Err.	. adjust	ed for 180 P> z) cluster [95% (cs in Conf.	countryl) Interval]
lrgdpna_gr~h 	Coef. .3837601	(Std. Err. Robust Std. Err. .0392738	z 9.77	ed for 180 P> z 0.000) cluster [95% (.30678	cs in Conf. 348	countryl) Interval] .4607354
lrgdpna_gr~h lccon_growth lck_growth	Coef. .3837601 .0704687	(Std. Err. Robust Std. Err. .0392738 .0323552	. adjust z 9.77 2.18	P> z 0.000 0.029) cluster [95% (.30678 .00705	cs in Conf. 348 537	countryl) Interval] .4607354 .1338838
lrgdpna_gr~h lccon_growth lck_growth lpop_growth	Coef. .3837601 .0704687 .4287039	(Std. Err. Robust Std. Err. .0392738 .0323552 .083819	z 9.77 2.18 5.11	ed for 180 P> z 0.000 0.029 0.000	95% (30678 .00705 .26442	conf. 348 537 218	countryl) Interval] .4607354 .1338838 .5929861
lrgdpna_gr~h lccon_growth lck_growth lpop_growth _cons	Coef. .3837601 .0704687 .4287039 1.024606	(Std. Err. Robust Std. Err. .0392738 .0323552 .083819 .2404972	z 9.77 2.18 5.11 4.26	P> z 0.000 0.029 0.000 0.000	[95% (.30678 .00705 .26442 .55324	cs in Conf. 348 537 218 401	countryl) Interval] .4607354 .1338838 .5929861 1.495972
lrgdpna_gr~h lccon_growth lck_growth lpop_growth 	Coef. .3837601 .0704687 .4287039 1.024606 .40670155	(Std. Err. Robust Std. Err. .0392738 .0323552 .083819 .2404972	z 9.77 2.18 5.11 4.26	ed for 180 P> z 0.000 0.029 0.000 0.000	[95% (.30678 .00705 .26442 .55324	conf. 348 537 218 401	countryl) Interval] .4607354 .1338838 .5929861 1.495972
lrgdpna_gr~h lccon_growth lck_growth lpop_growth 	Coef. .3837601 .0704687 .4287039 1.024606 .40670155 5.4526324	(Std. Err. Robust Std. Err. .0392738 .0323552 .083819 .2404972	z 9.77 2.18 5.11 4.26	ed for 180 P> z 0.000 0.029 0.000 0.000	[95% (.30676 .26442 .55324	conf. 348 537 218 401	countryl) Interval] .4607354 .1338838 .5929861 1.495972

Instructor: Chaoyi (NJE & MNB)

April 11, 2023 12 / 12