Empirical Panel Data: Lecture 7

INSTRUCTOR: CHAOYI CHEN NJE & MNB

April 18, 2023

@copyright Chaoyi Chen (NJE & MNB). All rights reserved. Please do not distribute without express written consent.

Instructor:	Chaoyi ((NJE &	MNB)
-------------	----------	--------	------

Topic 3: Panel data model estimators

- Fixed effects model: LSDV estimator
- Random effects model: GLS estimator
- When *T* is large: **No** difference in whether to treat the effects as fixed or random. This is because both the LSDV estimator and the generalized least-squares estimator become the same estimator:

$$\widehat{\beta}^{GLS} \underset{T \longrightarrow \infty}{\longrightarrow} \widehat{\beta}^{LSDV}$$

• When *T* is finite: It can make a surprising amount of difference in the estimates of the parameters. We need to identify the effects. We need to have a specification test!

Of course, not this test

- Two fundamental assumptions in random effects:
 - the unobserved individual effects α_i are random draws from a common population.
 - 2 The explanatory variables are strictly exogenous:

$$E(\varepsilon_{it}|\boldsymbol{X_i}) = E(\alpha_i|\boldsymbol{X_i}) = 0$$

• Therefore, we are interested in the following hypothesis testing:

$$H_0: E(\alpha_i | \mathbf{X}_i) = 0$$
$$H_A: E(\alpha_i | \mathbf{X}_i) \neq 0$$

- Under the null, the model is a random effect model.
- Under the alternative, the model is a fixed effect model.

Topic 3: Hausman's specification test

- How to test? Hausman's approach.
- Hausman (1978) proposes a general specification test, that can be applied in the specific context of linear panel models to the issue of specification of individual effects (fixed or random).

Jerry Hausman

John & Jennie S. MacDonald Professor of Economics

Research Fields

Econometrics

source: Department of Economics, MIT

Topic 3: General idea of the Hausman's test

 $H_0: E(\alpha_i | \mathbf{X}_i) = 0$ $H_A: E(\alpha_i | \mathbf{X}_i) \neq 0$

- Our observations:
 - Under the null, true model is a random effects model. Both $\hat{\beta}^{GLS}$ and $\hat{\beta}^{LSDV}$ are consistent estimator. However, only $\hat{\beta}^{GLS}$ is BLUE.
 - **2** Under the alternative, true model is a fixed effects model. $\hat{\beta}^{GLS}$ is inconsistent. $\hat{\beta}^{LSDV}$ is still consistent.
- \bullet Hausman's idea: examining the distance between $\widehat{\beta}^{GLS}$ and $\widehat{\beta}^{LSDV}$
 - **1** If the distance is small, H_0 can not be rejected.
 - 2 If the distance is large, H_0 can be rejected.

Topic 3: Distance measure and the Wald statistic

• Naturally, we can use the *standardized* distance defined as follows:

$$H = \left(\widehat{\beta}^{GLS} - \widehat{\beta}^{LSDV}\right)^{\top} \left(\mathsf{Var}\left(\widehat{\beta}^{GLS} - \widehat{\beta}^{LSDV}\right) \right)^{-1} \left(\widehat{\beta}^{GLS} - \widehat{\beta}^{LSDV}\right)^{-1}$$

- **Remark 1**: This is a typical *Wald* statistic. Under the null, $H \xrightarrow{d} \chi^2(k)$.
- **Remark 2**: However, this test statistic is not feasible to use since we cannot compute it!
- What we know? $\hat{\beta}^{LSDV}$, $\hat{\beta}^{GLS}$, $Var(\hat{\beta}^{LSDV})$, $Var(\hat{\beta}^{GLS})$
- What we do not know? Var $(\hat{\beta}^{GLS} \hat{\beta}^{LSDV})$.

• Why? Because we do not know $Cov(\hat{\beta}^{GLS}, \hat{\beta}^{LSDV})$.

Topic 3: Hausman's Lemma

• Under the null, Hausman (Hausman 1978) shows

$$\mathsf{Var}\left(\widehat{\boldsymbol{\beta}}^{\mathsf{GLS}} - \widehat{\boldsymbol{\beta}}^{\mathsf{LSDV}}\right) = \boxed{\mathsf{Var}(\widehat{\boldsymbol{\beta}}^{\mathsf{LSDV}}) - \mathsf{Var}(\widehat{\boldsymbol{\beta}}^{\mathsf{GLS}})}$$

Therefore, Hausman suggests using the test statistic

$$\mathcal{H} = \left(\widehat{\boldsymbol{\beta}}^{\textit{GLS}} - \widehat{\boldsymbol{\beta}}^{\textit{LSDV}}\right)^{\top} \left(\mathsf{Var}(\widehat{\boldsymbol{\beta}}^{\textit{LSDV}}) - \mathsf{Var}(\widehat{\boldsymbol{\beta}}^{\textit{GLS}})\right)^{-1} \left(\widehat{\boldsymbol{\beta}}^{\textit{GLS}} - \widehat{\boldsymbol{\beta}}^{\textit{LSDV}}\right)$$

• KEY-INSIGHT of Hausman's Lemma:

• Under the null, the difference between $\hat{\beta}^{GLS}$ and $\hat{\beta}^{LSDV}$ is orthogonal to $\hat{\beta}^{GLS}$. Thus,

$$\begin{split} & \operatorname{Cov}(\widehat{\boldsymbol{\beta}}^{GLS}, \widehat{\boldsymbol{\beta}}^{GLS} - \widehat{\boldsymbol{\beta}}^{LSDV}) = \mathbf{0} \Longleftrightarrow \operatorname{Cov}(\widehat{\boldsymbol{\beta}}^{GLS}, \widehat{\boldsymbol{\beta}}^{LSDV}) = \operatorname{Var}(\widehat{\boldsymbol{\beta}}^{GLS}) \\ & \Longrightarrow \operatorname{Var}\left(\widehat{\boldsymbol{\beta}}^{GLS} - \widehat{\boldsymbol{\beta}}^{LSDV}\right) = \operatorname{Var}(\widehat{\boldsymbol{\beta}}^{LSDV}) - \operatorname{Var}(\widehat{\boldsymbol{\beta}}^{GLS}) \end{split}$$

Topic 3: Hausman specification test asymptotic theory

• The Hausman specification test statistic of individual effect can be defined as follows:

$$\mathcal{H} = \left(\widehat{\beta}^{\textit{GLS}} - \widehat{\beta}^{\textit{LSDV}}\right)^{\top} \left(\mathsf{Var}(\widehat{\beta}^{\textit{LSDV}}) - \mathsf{Var}(\widehat{\beta}^{\textit{GLS}})\right)^{-1} \left(\widehat{\beta}^{\textit{GLS}} - \widehat{\beta}^{\textit{LSDV}}\right)$$

• Theorem: Under H_0 : $E(\alpha_i | \mathbf{X}_i) = 0$, we have

$$H \xrightarrow[nT \to \infty]{d} \chi^2(k)$$

- Hausman test applies to the typical case in practice When n is large relative to T.
- When n is fixed and T tends to infinity, nT → ∞ still holds. However, in this situation the fixed-effects and random-effects models become indistinguishable for all practical purposes. Moreover, the numerator and denominator of H approach zero at the same speed. see e.g. (Ahn and Moon 2014).

A Stata example: Hausman specification test

- xtreg lrgdpnagrowth lccongrowth lckgrowth lpopgrowth, fe
- estimates store fixed
- xtreg lrgdpnagrowth lccongrowth lckgrowth lpopgrowth, re
- estimates store random
- hausman fixed random, sigmamore

. hausman fixed random, sigmamore

	—— Coeffic	cients ——		
	(b)	(B)	(b-B)	<pre>sqrt(diag(V_b-V_B))</pre>
	fixed	random	Difference	S.E.
lccon_growth	.3785448	.3837601	0052153	.0007537
lck_growth	.0511562	.0704687	0193125	.002678
lpop_growth	.566651	.4287039	.137947	.0382441

b = consistent under Ho and Ha; obtained from xtreg B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

chi2(3) = (b-B)'[(V_b-V_B)^(-1)](b-B) = 95.47 Prob>chi2 = 0.0000

< ロト < 同ト < ヨト < ヨト

An, Seung Chan and Hyungsik Roger Moon (2014). Large-n and large-t properties of panel data estimators and the hausman test. *Festschrift in Honor of Peter Schmidt* p. 219–258.
Busman, J. A. (1978). Specification tests in econometrics. *Econometrica* 46(6), 1251–1271.