
ECON 3740: INTRODUCTION TO ECONOMETRICS

Instructor: Chaoyi Chen
Department of Economics and Finance, University of Guelph

Lecture 9

Instructor: Chaoyi (U. of Guelph) ECON 3740 October 10, 2018 1 / 14



Lecture outline

Last lecture, we finished topic five. Today, we will

study topic 6: multiple linear regression analysis: estimation

The model and motivation

Mechanics and intepretation of OLS

The OLS estimates

Interpret OLS estimates

A ”Partialling Out” interpretation of multiple regression

FWL theorem
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MLR: the model and motivation

The multiple linear regression (MLR) model is defined as

yi = β0 + β1x1i + .. + βkxki + µi

which tries to explain variable y in terms of variables x1, x2, ..., xk .

Terminologies for y , (x1, x2, ..., xk), µ, β0, (β1, .., βk) are the same as
in the SLR model.

Motivations:
1. Incorporate more explanatory factors into the model
2. Explicitly hold fixed other factors that otherwise would be in µ
Allow for more flexible functional forms

Motivation 1 is easy to understand. We will provide four examples to
illustrate the other two motivations: Examples i and ii for motivation
2 and Examples iii and iv for motivation 3.
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MLR: motivation 2 - example i

Example i : Suppose we have the augmented education-wage model

wage = β0 + β1educ + β2exper + µ,

where

wage=hourly wage
educ= years of education

exper= years of labor market experience
µ=all other factors affecting wage

Now, β1 measures effect of education EXPLICITLY HOLDING
EXPERIENCE FIXED

If omitting exper , then E [µ|educ ] 6= 0 given that educ and exper are
correlated. This implies β̂1 is biased.
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MLR: motivation 2 - example ii

Example ii : Suppose, we would like to investigate the effect of per student
spending on average score. Therefore, we propose the following model

avgscore = β0 + β1expend + β2avginc + µ

where

avgscore= average standardized test score of school
expend=per student spending at this school

avginc=average family income of students at this school
µ= all other factors affecting avgscore

Per student spending is likely to be correlated with average family
income at a given high school because of school financing.

Omitting average family income in regression would lead to biased
estimate of the effect of spending on average test scores.

In a simple regression model, effect of per student spending would
partly include the effect of family income on test scores. (what is the
intuition behind? direct effect and indirect effect)
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MLR: motivation 3 - example iii

Example iii : Suppose, we would like to investigate the effect of family income
on family consumption. Therefore, we propose the following model

cons = β0 + β1inc + β2inc
2 + µ

where

cons= family consumption
inc= family income

inc2=family income squared
µ=all other factors affecting cons

Model has two explanatory variables: income and income squared.

Consumption is explained as a quadratic function of income.

One has to be very careful when interpreting the coefficients:

∂cons

∂inc
= β1 + 2β2inc

which depends on how much income is already there. (Note that ∂cons
∂inc is

the marginal propensity to consume)
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MLR: motivation 3 - example iv

Example iv : To investigate the effect of CEO Tenure on CEO salary. One can
propose:

log(salary) = β0 + β1log(sales) + β2ceoten+ β3ceoten
2 + µ

where

log(salary )=log of CEO salary
log(sales)= log sales

ceoten=CEO tenure with the firm

Model assumes a constant elasticity relationship between CEO salary
an the sales of her or his firm. (why?)

Model assumes a quadratic relationship between CEO salary and his
or her tenure with the firm.

Note that the model is still linear model since the ”linear” in linear
regression means linear in parameter, not ”linear in the variables”.
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MLR: mechanics and interpretation of OLS - obtain OLS
estimates

Suppose we have a random sample {(xi ,1, ..., xik , yi ) : i = 1, .., n},
where the first subscript of xij , i , refer to the observation number,
and the second subscript j , j = 1, .., k , refer to different independent
variables.

Define the residuals at arbitrary β = (β0, β1, .., βk) as

µ̂i (β) = yi − β0 − β1xi1 − ..− βkxik

Minimize the sum of squared residuals:

min
β
SSR(β) = min

β

n

∑
i=1

µ̂i (β)2 = min
β0,β1,..,βk

n

∑
i=1

(yi − β0 − β1xi1 − ..− βkxik)
2
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MLR: mechanics and interpretation of OLS - obtain OLS
estimates

Differentiate the ∑n
i=1(yi − β0 − β1xi1 − ..− βkxik)

2 w.r.t
β0, β1, .., βk , we have the FOCs

n

∑
i

(yi − β0 − β1xi1 − ..− βkxik) = 0

n

∑
i

xi1(yi − β0 − β1xi1 − ..− βkxik) = 0

...
n

∑
i

xik(yi − β0 − β1xi1 − ..− βkxik) = 0

Therefore, we have k + 1 equations and k + 1 unknown variables
(β0, β1, .., βk) to solve. One can calculate the OLS estomates
β̂ = (β̂0, β̂1, ..., β̂k) through R.
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MLR: mechanics and interpretation of OLS - interpret OLS
estimates

In the MLR model, yi = β0 + β1x1i + .. + βkxki + µi . Hence

βj =
∂y
∂xj

.

This helps us analyze the ceteris paribus effect with the meaning - ”by
how much does the dependent variable change if the j th independent
variable is increased by one unit, holding all other independent variables
and the error term constant”.

The multiple linear regression model manages to hold the values of
other explanatory variables fixed even if, in reality, they are correlated
with the explanatory variable under consideration. The multiple linear
regression (MLR) model manages to hold the values of other
explanatory variables fixed even if, in reality, they are correlated with
the explanatory variable under consideration.
It has still to be assumed that unobserved factors do not change if the
explanatory variables are changed.
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MLR: mechanics and interpretation of OLS - interpret OLS
estimates, an example

Example: Determinants of College GPA. After the estimation, the fitted
regression is:

ĉolGPAi = 1.29 + 0.453hsGPA+ 0.0094ACT

colGPA=grade point average at college
hsGPA= high school grade point average

ACT= achievement test score 1

Holding ACT fixed, another point on high school GPA is associated
with another 0.453 points college GPA
Or: If we compare two students with the same ACT , but the hsGPA
of student A is one point higher, we predict student A to have a
colGPA that is 0.453 higher than that of student B.
Holding high school GPA fixed, another 10 points on ACT are
associated with less than one-tenth point on college GPA.

1Examples of achievement test are SAT, AP, and the national university entrance
exam in some countries
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MLR: mechanics and interpretation of OLS - a ”Partialling
Out” interpretation of multiple regression

One can show that the estimated coefficient of an explanatory
variable in a multiple regression can be obtained in two steps:

Step 1. Regress the explanatory variable on all other explanatory
variables.
Step 2. Regress y on the residuals from this regression

Mathematically, suppose we regress y on the constant 1, x1, and x2
(denoted as y ∼ 1, x1, x2), and want to get β̂1. We implement
following regressions

xi1 ∼ 1, xi2 =⇒ r̂i1
2

yi ∼ r̂i1 =⇒

β̂1 =
∑n

i=1 r̂i1yi

∑n
i=1 r̂

2
i1

In Step 1, the constant regressor is not required since the mean of r̂i1 is equal to
zeros from Step 1. If the constant regressor is added in, the formula of β̂1 is the
same since ¯̂r1 = 1

n ∑n
i=1 r̂i1 = 0

2we use r̂ to denote the corresponding residuals for each regression
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MLR: a formal derivation of the β̂1 formula

Recall, from the SLR, step 1 gives: xi1 = x̂i1 + r̂i1 with
x̂i1 = δ̂0 + δ̂1xi2, ∑n

i=1 r̂i1 = 0, ∑n
i=1 xi2r̂i1 = 0 and ∑n

i=1 x̂i1r̂i1 = 0.

Recall that the FOCs of OLS when k = 2 are

∑n
i (yi − β0 − β1xi1 − βkxi2) = 0

∑n
i xi1(yi − β0 − β1xi1 − βkxi2) = 0

∑n
i xi2(yi − β0 − β1xi1 − βkxi2) = 0

From the second FOC,

∑n
i (δ̂0 + δ̂1xi2 + r̂i1)(yi − β0 − β1xi1 − βkxi2)

= δ̂0 ∑n
i=1 µ̂i + δ̂1 ∑n

i=1 xi2µ̂i + ∑n
i=1 r̂i1(yi − β0 − β1xi1 − βkxi2)

= −β̂0 ∑n
i=1 r̂i1 − β̂2 ∑n

i=1 xi2 r̂i1 + ∑n
i=1 r̂i

(
yi − β̂1(x̂i1 + r̂i1)

)
where µ̂i1 = yi − β̂0 − β̂1xi1 − β̂2xi2, the second iequality is from the first
and third FOCs, and the third equality is from the properties of r̂i1 above.

Solving the last equality, ∑n
i=1 r̂i1yi = β̂1 ∑n

i=1 r̂
2
i1, we can obtain the

β̂1 formula.
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MLR: FWL theorem and the connection with SLR

Why does this procedure work? This procedure is usually called the
FWL theorem and was proposed in the following two papers:

Frisch, R. And F. Waugh, 1933, Partial Time Regressions as Compared
with Individual Trends, Econometrica, 1, 387-401.
Lovell, M.C., 1963, Seasonal Adjustment of Economic Time Series,
Journal of the American Statistical Association, 58, 993-1010.

The residuals from the first regression is the part of the explanatory
variable that is uncorrelated with the other explanatory variables.
The slope coefficient of the second regression therefore represents the
isolated (or pure) effect of the explanatory variable on the dependent
variable.
Recall that in the SLR,

β̂1 =
∑n

i=1(xi − x̄)yi
∑n

i=1(xi − x̄)2

So in the MLR, we replace xi − x̄ by r̂i1. Intuitively, xi − x̄ us the
residual in the regression of xi on all other explanatory variables 3,
where x̄ is the coefficient of the only regressor 1. Therefore, it is a
special case of the general MLR OLS form.

3In the SLR, all other explanatory variables are only the constant 1
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