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Outlines

Model Diagnostics and Selection Test Jump [Online Lecture (minor)
+ Self-study (major)]
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Model selection Criteria

Intuition

Intuition: Posit yt ∼ ARMA(p, q)

if p and/or q too small

model may be wrong

estimates and forecasts biased

tests may over-rejected
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Model selection Criteria

Example: the true model is AR(2)

yt = a0 + a1yt−1 + a2yt−2 + εt (1)

But we estimate an AR(1)

yt = â0 + â1yt−1 + ût (2)
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Model selection Criteria

if p and/or q too big

model still correct

But needlessly estimate extra coefficients, whose true value is zero.

Lose degrees of freedom

Increase variance of parameter estimates and forecasts

Increase probability if type 2 error.
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Model selection Criteria

Example: the true model is AR(1)

yt = a0 + a1yt−1 + εt (3)

But we estimate an AR(1)

yt = â0 + â1yt−1 + â2yt−2 + ε̂t (4)
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Model selection Criteria

Recall Sum of Squared Residuals:

SSR =
T

∑
t=1

ε̂t
2

- a measure of how well the model fits the data.

The smaller the better.
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Model selection Criteria

Temptation: Use SSR or (R2) to compare ARMA(p,q) models for
different values of p and g to see which fits data best.

Problem: Recall that the SSR always goes down(and R2 goes up) as
add regressors or as p increase or q increase.

So following (C) would give us huge and terrible values of p and p.

Solution: compare SSR but penalize larger model.

Chaoyi Chen (BCE & MNB) Model diagnostics and selection for ARMA models 9 / 61



Model selection Criteria

One such criteria is Akaike Information Criteria(AIC)

AIC = T ln(
SSR

T
) + 2(no parameters)

Another is the Schwartz Bayesian Criteria (SBC)1

SBC = T ln(
SSR

T
) + (no parameters) ln(T )

Smaller AIC or SBC suggests better model.

1a.k.a. Bayesian Information Criteria (BIC)
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Model selection Criteria

Practical Model selection using AIC or SBC.

Choose a maximum values of p and q, say p̄ and q̄

Estimate the ARMA(p,q) for each combination of p and q satisfying,
0 ≤ p ≤ p̄ and 0 ≤ q ≤ q̄. And record the AIC and SBC.

Choose the (p,q) with the smallest AIC or SBC as your model.

This can be done using a double loop
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Model selection Criteria

Without using exact code, your program might have structure similar to:

AIC = zeros(p+1,q+1); % Matrix to store AIC results in

for p=1:pmax+1;% loop through AR lag orders

for q=1:qmax+1; % loop through MA lag orders

AIC(p,q) = ARMA AIC(p-1,q-1);% calculate and store AIC values

end; % end loop for p

end; % end loop for q

print AIC % print out results
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Auto Covariance and Auto relation functions

Let’s define:

γ0 = var(yt)

γ1 = cov(yt , yt+1)
...

γh = cov(yt , yt+h)

γh is the auto-covariance function,it is a function of h, which is the
time between the two observations
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Autocovariance and Autocorrelation functions

Now define

ρ0 = cor(yt , yt) = 1

ρ1 = cor(yt , yt+1) =
cov(yt , yt+1)√
var(yt)var(yt+1)

ρ2 = cor(yt , yt+2) =
cov(yt , yt+2)√
var(yt)var(yt+2)

...
...

ρh = cor(yt , yt+h) =
cov(yt , yt+h)√
var(yt)var(yt+h)

ρn is the auto-correlation function(ACF)-again a function of h.
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Autocovariance and Autocorrelation functions

Covariance Stationary and the ACF

Suppose yt is covariance stationary.

Then, by definition:

var(yt) is the same for all t.

γh = cov(yt , yt+h) is the same for all t.

(But still different for all different h).
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Covariance stationarity and the ACF

This means that for the ACF.

ρh = cor(yt , yt+h) =
cov(yt , yt+h)√
var(yt)var(yt+h)

is also the same for all t. (But again different for each h)

The ACF also simplifies since:

var(yt) = var(yt+h) = γ0

ρh =

γh︷ ︸︸ ︷
cov(yt , yt+h)√
var(yt)︸ ︷︷ ︸

γ0

var(yt+h)︸ ︷︷ ︸
γ0

=
γh

γ0
(5)
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Purpose of ACF

Purpose of the ACF

Useful in model selection.

ACF of yt gives some idea of which model may be appropriate for
yt—The model should capture the autocorrelation in data.

ACF of the residual in your model can be used as a diagnostic check-If
you selected a good model,the residuals should not be autocorrelated.

More on this later
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Calculating population(theoretical) ACF for ARMA models

Purpose: Compare theoretical ACF of given model to estimated ACF
to evaluate if model is appropriate.

ACF for White Noise Process2

yt = εt

Et−1εt = 0

var(εt) = σ2

(Above is a white noise model)

Let’s start with covariances.

γ0 = σ2

γ1 = γ2 = γ3 = ... = 0

2Since the constant does not impact the covariance, we can simplify the calculation
of the theoretical ACF by omitting the intercept. We would not do this in practice.
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Calculating population(theoretical) ACF

Now the ACF:

ρ0 =
γ0

γ0
= 1 (always)

ρ1 =
γ1

γ0
=

0

γ0
= 0

ρ2 = ρ3 = ρ4 = ... = 0
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White Noise ACF

Plot of White Noise ACF
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White Noise ACF

Recognize white noise process by ACF:

ACF is zero (population case) or small and insignificant (sample case)
for all h, except h = 0

Intuition: white noise has no autocorrelation.

Use as a residual diagnostic:

Model residuals should be white noise if you picked a good model.
So their ACF should resemble the one above.

Application to finance

If returns not predictable, then their ACF should look like White
Noise ACF.
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ACF FOR MA(1) Model

ACF for MA(1) Model

yt = εt + b1εt−1

Et−1εt = 0

var(εt) = σ2

(Above is a MA(1) model)

γ0 = var(yt) = var( εt + b1εt−1︸ ︷︷ ︸
εt−1, εt orthogonal

)

= var(εt)︸ ︷︷ ︸
σ2

+b21 var(εt−1)︸ ︷︷ ︸
σ2

= (1 + b21)σ
2 (6)
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ACF FOR MA(1) Model

γ1 = cov(yt , yt+1) (7)

= cov [

yt︷ ︸︸ ︷
(εt + b1εt−1),

yt+1︷ ︸︸ ︷
(εt+1 + b1εt)]

(only εt and b1εt non-orthogonal)

= b1E [ε
2
t ]

= b1σ2 (8)

γ2 = cov(yt , yt+2)

= cov (εt + b1εt−1, εt+2 + b1εt+1)

= 0

Similarly γ3 = γ4 = γ5 = ... = 0
Intuition: MA(1) only overlaps 1 period.
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Now, the ACF

ρ0 = 1 always (9)

ρ1 =
γ1

γ0
(10)

=
b1σ2

(1 + b21)σ
2

(11)

=
b1

1 + b21
(12)

ρ2 =
γ2

γ0
= 0, ρ3 =

γ3

γ0
= 0, ρ4 = 0, ... (13)
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ACF FOR MA(1) Model

Plot ACF for b1 =
1
2

Recognize MA(1) by its ACF:
– ACF noticeable and significant at lag h=1
– ACF small and insignificant for h > 1
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ACF FOR MA(1) Model

Plot ACF for b1 = −1 (an over-differenced series)

ρ1 =
−1

1 + (−1)2
= −1

2

Recognize over-differenced seroes by its ACF:
(i) ACF negative (close to − 1

2 ) at lag 1
(ii) Generally close to zero or insignificant at lag h > 1

Chaoyi Chen (BCE & MNB) Model diagnostics and selection for ARMA models 26 / 61



ACF FOR MA(1) Model

Why ”over differenced”?

For b1 = −1, MA(1) becomes εt − εt−1 = ∆εt a difference.

Sometimes differencing is employed when variables is non-stationary.

But εt always stationary — it didn’t need to be differenced.
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ACF FOR AR(1) Model

yt = a1yt−1 + εt AR(1)3

Solve for the covariance one time period apart:

γ1 = cov(yt , yt+1) (Plug in yt+1 = a1yt + εt+1) (14)

= cov(yt , (a1yt + εt+1)) (15)

= a1cov(yt , yt) + cov(yt , εt+1) (16)

= a1var(yt) (17)

= a1γ0 (18)

3As usual also assume Et−1εt , var (εt )σ2 and |a1| < 1
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ACF FOR Stationary AR(1) Model

Solve for the covariance two time periods apart:

γ2 = cov(yt , yt+2) (Plug in yt+2 = a1yt+1 + εt+2) (19)

= cov(yt , a1yt+1 + εt+2) (20)

= a1 cov(yt , yt+1)︸ ︷︷ ︸
γ1

+ cov(yt , εt+2)︸ ︷︷ ︸
0

(21)

= a1 cov(yt , yt+1)︸ ︷︷ ︸
γ1

(22)

(23)

Now Recognize the pattern:

γ1 = a1γ0 (24)

γ2 = a1γ1 = a21γ0 (25)
...

...

γh = ah1γ0 h = 0, 1, 2, 3, ... (26)
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ACF FOR AR(1) Model

Now the ACF

ρ0 = 1 (27)

ρ1 =
γ1

γ0
=

a1γ0

γ0
= a1 (28)

ρ2 =
γ2

γ0
=

a21γ0

γ0
= a21 (29)

...
...

ρh =
γh

γ0
=

ah1γ0

γ0
= ah1 (30)
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ACF FOR AR(1) Model

yt = a0 + a1yt−1 + εt

Plot ACF of AR(1) with a1 = 1/2

ρ0 = 1, ρ1 = 1/2, ρ2 = (
1

2
)2 =

1

4
, ρ3 = (

1

2
)3 =

1

8
, ρ4 =

1

16
, ...
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ACF FOR AR(1) Model

Recognize stationary AR(1) with a1 > 0

Geometric decline of ACF

ACF starts large/significant and positive.

Becomes smaller and eventually insignificant

Chaoyi Chen (BCE & MNB) Model diagnostics and selection for ARMA models 32 / 61



ACF for nearly nonstitonary AR(1)

yt = a0 + a1yt−1 + εt

Plot of nearly nonstationary AR(1): a1 = 0.9

ρ0 = 1, ρ1 = 0.9, ρ2 = (0.9)2 = 0.81,

ρ3 = (0.9)3 = 0.729, ρ4 = (0.9)4 = 0.6561

Recognize Possible (or almost) nonstationary AR(1)

ACF is slow to decline– stays large, positive, significant for many lags.
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ACF for negative AR(1) slope coefficient

yt = a0 + a1yt−1 + εt

Plot ACF with a1 = −1/2,(Negative Root)

ρ0 = 1, ρ1 = −1/2, ρ2 = (−1

2
)2 =

1

4
, ρ3 = (−1

2
)3 = −1

8
, ρ4 =

1

16

Recognize AR(1) with negative root:

Oscillates between positive and negative

Magnitude decays geometrically
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Estimated ACF

So far— looked at ACF implied by various models

Now— estimate ACF directly form data without a model

Use— If the estimated ACF similar to one of the model based ACFS
this may suggest a tentative model

Note— The estimated ACF is always noisy and never looks exactly
like model based ACF - look for (broadly) similar features.
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Estimated ACF

The estimated auto-covariance is:

γ̂h =
1

T

T

∑
t=h+1

(yt − ȳ)(yt−h − ȳ) (estimated covariance function)

The estimated autocorrelation is:

ρ̂h =
γ̂h

γ̂0
=

1
T ∑T

t=h+1(yt − ȳ)(yt−h − ȳ)
1
T ∑T

t=1(yt − ȳ)2
(estimated ACF)
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Estimated ACF

Standard errors for ACF

It has been shown that:

var(ρ̂n) =

{
1
T , h = 1
1
T (1 + 2 ∑h−1

j=1 ρ2j ) h > 1
(31)

So practical formula for standard error is:

se(ρ̂h) =


1√
T

h = 1

1√
T

√
1 + 2 ∑s−1

j=1 ρ̂2i h > 1
(32)

Often we want to compare our ACF to white noise ACF. Then we
may calculate standard errors under null hypothesis of white noise
ACF, for which ρh = 0 for all h.
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Estimated ACF

In this case se(ρ̂h) simplifies to:

se(ρ̂h) =
1√
T

h ≥ 1

Common to include two-standard-error bands away from zero in ACF
using:

0± 2se(ρ̂n) = 0± 2√
T
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Box-Pierce and Ljung Box Statistics

Box-Pierce and Ljung Box Statistics

Problem with 2 standard error bands is that each one can be wrong
about 5% of time.

So if we calculate ACF for h = 1, 2, ..., 20, there is a good chance
that the ACF will lie outside the error bands for at least one or two
values of h, even if the true model is White Noise.

Box Pierce and Ljung Box statistics provide a joint test that the ACF
is zero for the first H lags (e.g:H=20)

H0 : ρ1 = ρ2 = ρ3 = ... = ρH = 0 (33)

HA : Not H0 (34)
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Box-Pierce and Ljung-Box Test Statistics

Box-Pierce Test Statistic (Q):

Q = T
H

∑
h=1

(ρ̂h)
2 ∼
H0

χ2(H) (for T large)

Ljung-Box Test Statistic (Q̃):

Q̃ = T (T + 2)
H

∑
h=1

ρ̂2h
T − h

∼
H0

χ2(H) (for T large)

1 The distributions are asymptotic distribution that works as an
approximation when T is large.

2 χ2(H): chi-squared distribution with degree of freedom H.

3 ∼
H0

: distribution as under the null hypothesis(i.e: this is the

distribution if null hypothesis holds true)
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Box-Pierce and Ljung Box Statistics

Rejection rules:

RejectH0 if Q > χ2
α(H) using Box Pierce (35)

RejectH0 if Q̃ > χ2
α(H) using Ljung-Box (36)

In practice: Ljung-Box is preferred due to better finite sample
performance.
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Use of Ljung-Box Statistics Test as a Diagnostic Test

If your model correctly specified the residuals are White Noise.

White Noise residuals implies ACF of residuals zero at all lags ≥ 1

Use Ljung-Box to test if ACF of residual zero at first H lags.

If Ljung-Box test rejects then residual not white noise and model
misspecified.

Degrees of freedom adjusted for number of parameters estimated (say
K) — Now H − k degrees of freedom.
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Ljung-Box as Diagnostic Text: Example

Estimate tentative model is AR(1):

yt = a0 + a1yt−1 + εt

Obtain the fitted residual:

ε̂t = yt − â0 − â1yt−1

Define the population and estimated ACF of εt :

ρε,h = cor(εt , εt+h)

ρ̂ε,h = ĉor(ε̂t , ε̂t+h)
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Ljung-Box as Diagnostic Text: Example

Decide the number of lags to test: H = 5

Specify the Null Hypothesis:

H0 : ρε,h = 0 for h = 1, 2, 3, 4, 5

Interpret the null hypothesis: Under the null hypothesis AR(1) is
model correct, εt is white noise and therefore first five
autocorrelations are zero

Form the Ljung-Box test statistics:

Q̃ = T (T + 2)
5

∑
h=1

ρ̂2ε̂,h
T − h
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Ljung-Box as Diagnostic Text: Example

Decide the significance level: α = 0.05

Under the null hypothesis our test statistic has a Chi-Squared (χ2)
distribution with H − k = 5− 2 = 3 degrees of freedom:4

Q̃ ∼
H0

χ2(3)

So, from the statistical tables, our critical value is given by

χ2
0.05(3) = 7.81473

Reject if the test statistic exceeds the critical value, i.e. if:

Q̃ > 7.81473

Or, equivalently if
p-value < α = 0.05

4H=5 lags,k=2 estimated 2 parameters, H − k = 3 degrees of freedom
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Ljung-Box as Diagnostic Text: Example

If we reject the null hypothesis:

1 Our residual is not white noise/uncorrelated

2 Our model does not capture all the correlation in yt
3 We may need more AR terms, MA terms or a seasonal lag to get the

remaining correlation

4 Maybe try an AR(2) or ARMA(1,1)
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Ljung-Box as Diagnostic Text: Example

If we fail to reject the null hypothesis:

1 Our residual is not white noise/uncorrelated

2 Our model does capture all the correlation in yt , which is good

3 Is it the smallest model that can do that?

4 If so, then we are happy with our model.

5 If not, maybe we can find an even smaller model that can capture the
correlation in yt
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The Partial Autocorrelation Function (PACF)

A second widely used visual diagnostic.

Correlation between yt and yt−h, after controlling for the first h-1 lags
(yt−1, yt−2, ..., yt−h−1)

PACF at lag1 = cor(yt , yt−1) = ρ1, because there are no lags in
between to control for.

PACF at lag2 is the correlation between yt and yt−2 after controlling
for yt−1
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PACF-Partial Autocorrelation Function

Easiest to estimate (and understand) by a sequence of regressions.
Step 1: Regress

yt = φ1,0 + φ1,1yt−1 + error

(φ1,1 is PACF at lag 1.)

Step 2: Regress

yt = φ2,0 + φ2,1yt−1 + φ2,2yt−2 + error

(φ2,2 is PACF at lag 2.)
Step 3: Regress

yt = φ3,0 + φ3,1yt−1 + φ3,2yt−2 + φ3,3yt−3 + error

(φ3,3 is PACF at lag 3)
ect
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PACF-Partial Autocorrelation Function

PACF of white noise

Population PACF of white noise is zero for all h ≥ 1

Sample PACF of white noise generally small and insignificant.
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PACF-Partial Autocorrelation Function

PACF of AR(1)

yt = a0 + a1yt−1 + εt AR(1) true model

Note that the regressions in step 1,2,3.. match the true AR(1) model:

φ1,1 = a1 PACF at lag 1

φ2,2 = φ3,3 = φ4,4 = ... = φh,h = 0 PACF at lags h
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PACF-Partial Autocorrelation Function

Plot PACF for AR(1) with a1 = 0.5

Recognize AR(1) by its PACF

PACF large and significant at lag 1

PACF small and insignificant thereafter

Chaoyi Chen (BCE & MNB) Model diagnostics and selection for ARMA models 52 / 61



PACF for AR(2) model

Recognize AR(2) by its PACF

yt = a1yt−1 + a2yt−2 + εt

PACF large and significant at first two lags.

PACF small and insignificant thereafter.
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PACF for MA(1) model

yt = εt + b1εt−1 MA(1)

In this form PACF not obvious

Invert MA(1) model to get AR(∞):5

yt = b1yt−1 − b21yt−2 + b31yt−1 + ... + εt AR(∞)

item PACF of MA(1) declines gradually

PACF of MA(1) oscillates in sign when b1 > 0

5See next slide for derivation
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Derivation: Converting MA(1) to AR(∞)

yt = εt + b1εt−1

yt = (1 + b1L)εt Convert to lag notation

1

1− (−b1L)
yt = εt

Recall
∞

∑
j=0

x j =
1

1− x
⇒

∞

∑
j=0

(−b1L)j =
1

1− (−b1L)
=

1

1 + b1L

∞

∑
j=0

(−b1L)jyt = εt

(1− b1L+ b1L
2 − b31L

3 + ...)yt = εt

yt − b1yt−1 + b21yt−2 − b31yt−3 = εt

yt = b1yt−1 − b21yt−2 + b31yt−1 + ... + εt AR(∞)
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Elimination of Common Factors

Intuition and purpose

generally there are many equivalent ARMA representations of the
same time series process

Examples already covered are the MA(∞) representation of an AR(1)
and the AR(∞) representation of an MA(1).

Other examples involve ARMA models with common factors (example
below)

Because estimation of additional parameters is costly, we want to
select the representation that is most parsimonious (i.e. fewest
parameters)

In order to do this, we want to be sure to eliminate any common
factors.
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Common Factors-Example 1

Common Factors- Example 1 Start with ARMA(0,0) or white noise
εt ∼ WN, yt = εt This is an ARMA(0,0)

Introduce a common factor by multiplying both sides by (1− a1L):

yt = εt (37)

(1− a1L)yt = (1− a1L)εt

yt − a1Lyt = εt − a1Lεt

yt − a1yt−1 = εt − a1εt−1

yt = a1yt−1 + εt − a1εt−1 (38)

(38) is ARMA(1,1), representation of ARMA(0,0)
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Common Factors-Example

Another example:

yt = a1yt−1 + εt (Parsimonious AR(1))

(1− a1L)yt = εt (Rewrite using lag notation)

(1 + β1L)(1− a1L)yt = (1 + β1L)εt

(Introduce a common factor ⇒ (1 + β1L))

(1− (a1 − β1)L− a1β1L
2)yt = (1 + β1L)εt

yt − (a1 − β1)yt−1 − a1β1yt−2 = εt + β1εt−1

yt − (a1 − β1)yt−1 − a1β1yt−2 = εt + β1εt−1

yt = (a1 − β1)yt−1 + a1β1yt−2 + εt + β1εt−1 ARMA(2,1)

e.g a1 = 0, yt is WN,using β1 = −1 rewrite as yt = yt−1 + εt − εt−1
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Common Factors-Example

Interpretation

By adding common factor(1 + β1L), we have re-expressed AR(1) as
ARMA(2,1)

These are 2 equivalent representations of the same model.

But the AR(1) representation is preferred because it is more
parsimonious.

Practical Use

We would never convert our AR(1) to an ARMA(2,1) as above- this
was to illustrate the problem.

Suppose we estimated an ARMA(2,1)

We check to see if there is a common factor to both the lag
polynomials for the MA and AR components that approximately
cancel
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Common Factors-Example

If we can find a common factor, we can simply our model by
eliminating it.

In the example above, if we estimated as an ARMA(2,1) and noticed
that (1 + β1L) was a common factor that could be eliminated from
both sides of

(1 + β1L)(1− a1L)yt = (1 + β1L)εt

We would realize that our ARMA(2,1) had an AR(1) representation.
Then we would drop the ARMA(2,1) and estimate a more
parsimonious AR(1) instead.
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Common Factors-Example

In practice, it is unlikely that our estimated ARMA(2,1) would exactly
have common factors, but if it had two factors that were vary similar,
we might still want to consider a more parsimonious model, e.g

(1 + 0.42L)(1 + a1L)yt = (1 + 0.47L)εt

(The two coefficients at the front don’t cancel exactly, but are so
close that we would probably drop this ARMA(2,1) in favor of
(1− aL)yt = εt an AR(1))
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