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Outlines

Deterministic and Stochastic Trends Jump [Online Lecture +
Self-study]

Unit Root theory * Jump [Self-study if you have interest :)]

Brief Introduction to Unit Root Tests Jump [Online Lecture +
Self-study]

Cointegration * Jump [Self-study if you have interest :)]
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Trends: stochastic and deterministic

Deterministic trends

trends+noise

yt = α0 + α1t + εt , εt = 0 ∼ WN(0, σ2)
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Trends: stochastic and deterministic

Trend + ARMA(Trend-stationary)

yt = α0 + α1t + ut

ut =
p

∑
i=1

aiut−i +
q

∑
i=1

bi εt−i + εt (1)

Two components

yt = deterministic trend + Stationary component (2)

= (α0 + α1t) + ut (3)

For GDP: Long run growth trend (α0 + α1t) + business cycle (ut)

ut can also viewed as (infeasible) detrended version of yt
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Detrending

We can estimate model (67) jointly or following these three steps:

1 Run regression:
yt = α̂0 + α̂1t + ût

2 Define the (feasible) detrended yt as:

ût = yt − α̂0 − α̂1t

3 Fit an ARMA(p,q) model to ût :

ût =
p

∑
i=1

a1ût−i +
q

∑
t=1

b1εt−i + εt
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Detrending

Forecasting:

yt+1 = α0 + α1(t + 1) + ut+1 (4)

Etyt+1 = α0 + α1(t + 1) + Etut+1 (5)

ŷt+1|t = α̂0 + α̂1(t + 1)︸ ︷︷ ︸
trend forecast

+ ût+1|t︸ ︷︷ ︸
ARMA

forecast

(6)

ût+1|t =
p

∑
i=1

âi ût−i +
q

∑
i=1

b̂i ε̂t−i (7)
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Detrending

Remarks: Some macro models are designed to describe growth and
some to describe business recycles. The former would use the trend
component and the latter would use the stationary component.
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Stochastic trends

Random Walk Model:

yt = yt−1 + εt (8)

εt ∼ WN(0, σ2) (Et−1εt = 0) (9)

y0 = 0 (10)

Forecasts:

Etyt+1 = yt + Etεt+1 = yt A ”no-change” forecast

Tendency to wander off/stochastic trends
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Random Walk

What might a random walk look like?

Tendency to trend off, but direction of trend is random and the
trending behavior shifts randomly over time.

No, two realizations of yt will wander off on quite the same way.

examples
1 Random walk through a field after too many drinks
2 Stock price under risk neutral/ rational expectations
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Unit Root

Unit root model (Unit root non-stationary)

yt = yt−1 + ut ;

ut ∼ covariance stationary

E [ut ] = 0

(11)

Random Walk:
1 εt ∼ WN with Et εt+1 = 0
2 Change in yt is unforecastable εt
3 Best forecast of tomorrow (yt+1) is today (yt)

Unit Root:
1 ut ∼ covariance’s stationary and mean zero
2 ut may be forecastable (e.g. ARMA)
3 Forecast for yt+1 more complicated

So the random walk is special case of unit root.

Both exhibit the type of wandering behavior
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Taking First Differences

yt = yt−1 + ut

Bring yt−1 to the left-hand-side to solve for the first difference of yt :

∆yt = yt − yt−1 = ut ∼ covariance stationary

In special case of Random Walk:

∆yt = yt − yt−1 = εt ∼ WN(0, σ2)
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Taking First Differences

yt = yt−1 + ut

Remarks:

yt Unit root ⇒ ∆yt Stationary

Difference is the way we “detrend” a stochastic trend.

Differences in a picture

Can interpret stochastic trends as long-run growth (or contraction)
due to say, random, technology shocks.
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Differencing with Lag Operator Notation

Lyt = yt−1 (12)

(1− L)yt = yt − Lyt = yt − yt−1 = ∆yt (13)

(1− L)0yt = (1)yt = yt (14)

(1− L)2yt = (1− L)(1− L)yt (15)

= (1− L)∆yt (16)

= ∆2yt double difference (17)

∆d = (1− L)dyt = yt differenced d-times
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ARIMA Model

The ARIMA(p,d,q) is an ARMA(p,q) on the d th difference:

(1− L)dyt =
p

∑
i=1

ai (1− L)dyt−i +
q

∑
i=1

bi εt−i + εt (18)

where

εt ∼ WN(0, σ2) (19)

(1− L)dyt ∼ stationary for d = 0, 1, 2

(20)

In other words:

yt ∼ ARIMA(p, d , q) ⇔ (1− L)dyt ∼ ARMA(p, q) (21)

yt ∼ ARIMA(p, 1, q) ⇔ ∆yt ∼ ARMA(p, q) (22)

yt ∼ ARMA(p, 0, q) ⇔ yt ∼ ARMA(p, q) (23)
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ARIMA Model

An ARIMA(p,1,q) is a type of unit root

To see why: Define

ut = (1− L)yt = yt − yt−1 (24)

= stationary ARMA(p,q) (25)

yt = yt − yt−1 + yt−1 (26)

= ∆yt︸︷︷︸
ut

+yt−1

(27)

Another way to write ARIMA(p,q)

yt = yt−1 + ut (28)

ut = stationary ARMA(p,q) (29)
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Estimating an ARIMA(p,1,q) Model

To Estimate an ARIMA(p,1,q)

Step 1: Difference yt to get ut = ∆yt = stationary ARMA(p, q)

Step 2: Estimate an ARMA(p,q) using the differenced data.

∆yt =
p

∑
i=1

ai∆yt−i +
q

∑
i=1

bi εt−i + εt
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Forecasting with ARIMA(p,1,q) model

In theory:

yt+1 = yt + ut+1 (30)

Etyt+1 = yt + Etut+1 (31)

Etut+1 = Et∆yt+1 =
p

∑
i=1

ai∆yt−i +
q

∑
i=1

bi εt−i (32)

Etyt+1 = yt +
p

∑
i=1

ai∆yt−i +
q

∑
i=1

bi εt−i (33)

In practice:

ŷt+1|t = yt + ∆̂y t+1|t (34)

= yt +
p

∑
i=1

âi∆yt−i +
q

∑
i=1

b̂i ε̂t−i (35)
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Basic idea:

1 Difference yt to make it stationary

2 Use ARMA(p,q) to forecast its change (∆yt+1)

3 Your forecast of the level (yt) is just last periods value (yt−1) plus the
predicted change.
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Order of integration terminology

Unit root referred to as integrated of order 1 or I (1):
Why? unit roots

yt = yt−1 + ut (36)

y0 = 0 (37)

ut ∼ stationary (38)

Now iterate backwards:

yt = yt−1 + ut (39)

= [yt−2 + ut−1] + ut (40)

= yt−3 + ut−2 + ut−1 + ut (41)

= y1 + u2 + u3 + u4 + ... + ut (42)

= y0 + u1 + u2 + u3 + ... + ut (43)

= u1 + u2 + u3 + ... + ut (44)
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Order of integration terminology

So
yt = u1 + u2 + u3 + . . . + ut

is a sum of the ut ’s

So maybe it should have been called ”summed of order 1”.

But sums approximate integrals, so we say integrated of order 1 or
I(1)

ut is integrated of order zero or I(0) — no summation to get ut
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Order of integration terminology (continued)

If a process is a sum of I(0) processes, we say that it is I(1)

The Random Walk, ARIMA(p,1,q), and more general unit root
processes are all I(1)

If a process is the sum of an I(1) process we say that it is I(2)
e.g if yt ∼ unit root and xt = xt−1 + yt , x0 = 0, then

xt = y1 + y2 + ... + yt = I (2) (45)
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Differencing to undue integration

When we difference a process of order I(d) we get an I(d-1) process:

Difference an I(2) to get an I(1) process: In (71) xt ∼ I (2) and

xt = xt−1 + yt , yt ∼ I (1)

Then solve for yt :
yt = xt − xt−1 = ∆xt

Therefore
∆xt ∼ I (1)

Difference an I(1) process, to get an I(0) process:

yt = yt−1 + ut , ut ∼ I (0)

∆yt = yt − yt−1 = ut ∼ I (0)
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Unit Root + Trend Model

Some time series data both unit root behavior and a linear trend

Think about stock prices:

i) In the short-run it’s argued that stock prices are approximately
random walks, and they certainly look like a unit root when plotted.

ii) On the other hand, over long periods, the level of all the major
stock indices have been drifting upwards.This may be due to inflation,
economic growth, and technological improvements.

iii) So while over medium horizons stocks may trend up for a while
and then down for a while, over the very long term stock prices have
been dominated by an upward trend.
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Unit Root + Trend Model

Also think about GDP

Real business cycle theory argues that many permanent changes in
GDP due to technology shocks and these are essentially random
leading to unit root behavior.

On the other hand, while technological progress is random and
sporadic, we call it progress because more often than not technology
progresses forward rather than moving backward. And this tendency
should cause an upward trend.

Other factors such as capital accumulation and population growth may
also generate an upward trend.

Chaoyi Chen (BCE & MNB) Non-Stationary modeling, testing and forecasting 25 / 89



Unit Root + Trend Model

To model this type of data, we need to allow for both wandering
behavior (unit roots) and linear trends:

yt = trend component + unit root component

yt = α0 + α1t + vt (46)

vt = vt−1 + ut (47)

where

ut ∼ stationary e.g:stationary ARMA(p,q) without intercept

E [ut ] = 0 (48)
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Unit Root + Trend Model
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Unit Root + Trend Model

A trend in the level is an intercept in the difference

Subtract yt−1 from yt to take a first difference

yt = α0 + α1t + vt (49)

−[ yt−1 = α0 + α1(t − 1) + vt−1 ] (50)

∆yt = yt − yt−1 = 0 + α1(1) + vt − vt−1︸ ︷︷ ︸
ut

(51)

∆yt = α1 + ut (52)
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Unit Root + Trend Model

So,e.g if ut = a1ut−1 + εt , |a1| < 1

∆yt = α1 + ut

∆yt = α1 + a1 ut−1︸︷︷︸
∆yt−1−α1

+εt

∆yt = α1 + a1(∆yt−1 − α1) + εt

= α1(1− a1)︸ ︷︷ ︸
set a0=α1(1−a1)

+a1∆yt−1 + εt

∆yt = a0 + a1∆yt−1 + εt

a0 = α1(1− a1) (53)
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Remarks

The trend (α0 + α1t) in yt adds an intercept α1(1− a1) in ∆yt .

If yt has no trend (α1 = 0) then ∆yt has no intercept
(a0 = α1(1− a1) = 0)

Likewise if ∆yt has no intercept then yt has no trend.

The expectation of the first difference (or change)

E∆yt =
a0

1− a1
=

α1(1− a1)

1− a1
= α1

is given by the slope of the trend.

That’s intuitive: The greater the average increase in yt (E∆yt), the
faster yt trend up.
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Unit Root + Trend Model

Modeling Unit Root+ Trend with/ ARIMA(p,1,q)+ intercept

(1− L)yt︸ ︷︷ ︸
∆yt

= a0 +
p

∑
i=1

ai (1− L)yt−i︸ ︷︷ ︸
∆yt−i

+
q

∑
i=1

bi εt−i + εt

y0 = 0; εt ∼ WN(0, σ2); (1− L)yt stationary (54)

This implies that yt is a unit root +trend.
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Unit Root + Trend Model

To gain intuition, let’s look at the simplest ARIMA(p,1,q)+intercept
model possible- the ARIMA(0,1,0)+ intercept model

∆yt = a0 + εt y0 = 0 εt ∼ WN(0, σ2)

This is an ARIMA(0,1,0)+ intercept

yt = yt−1 + (yt − yt−1) (55)

= yt−1 + ∆yt (56)

yt = yt−1 + a0 + εt (57)
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Unit Root + Trend Model

y1 = y0︸︷︷︸
0

+a0 + ε1 (58)

= a0 + ε1 (59)

y2 = y1︸︷︷︸
a0+ε1

+a0 + ε2 (60)

= (a0 + ε1) + a0 + ε2 (61)

= 2a0 + ε1 + ε2 (62)

... (63)

yt = ta0︸︷︷︸
trend

+ ε1 + ε2 + ... + εt︸ ︷︷ ︸
vt

(64)
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Unit Root + Trend Model

Note that vt = (ε1 + ε2 + ... + εt−1)︸ ︷︷ ︸
vt−1

+εt

vt = vt−1 + εt is a random walk

So this is a random walk plus trend model
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Forecasting in unit root plus trend model

To forecast unit plus drift using 75:

yt+1 = yt + ∆yt+1 (65)

ŷt+1|t = yt + ∆̂y t+1|t (66)

So, no different than before, except now include intercept.
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Unit Root theory

Brief introduction to unit root asymptotic and tests

Chaoyi Chen (BCE & MNB) Non-Stationary modeling, testing and forecasting 36 / 89



Brief introduction to unit root asymptotic and tests

Standard Brownian Motion: A standard Brownian Motion is a
stochastic(ie. random), continuous time process that satisfies:
(A.1) w(0) = 0
(A.2) w(t) has continuous realization.
(A.3) The increment w(t)− w(s) ∼ N(0, t − s) for t ≥ s
(A.4) Disjoint increments, such as w(t)− w(s) and w(r)− w(v)
where t > s > r > v are independent.
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Brief introduction to unit root asymptotic and tests

Intuition: Continuous time counter part to random walk with respect
to standard normal errors:

yt = yt−1 + εt

εt ∼ iidN(0, 1)

y0 = 0 (67)

(A.1) w(0) = 0↔ y0 = 0
(A.3) w(t)− w(s) ∼ N(0, t − s)

yt = yt−1 + εt = yt−2 + εt−1 + εt

= ... = yt−s + εs+1 + εs+2 + ... + εt

var(yt − ys) = var(εs+1 + εs+2 + ... + εt)

= (t − s) var(εt)︸ ︷︷ ︸
1

= (t − s)
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Brief introduction to unit root asymptotic and tests

(A.4) For t > s > r > v :
w(t)− w(s) independent of w(r)− w(v)

yt − ys = εs+1 + εs+2 + ... + εt (68)

yr − yv = εv+1 + εv+2 + ... + εr (69)

(68) and (69) share no ε in common. So, all the ε in (68) are
independent of those in (69).

Intuition: If you observed w(t) at discrete point in time
t = 0, 1, 2, 3, ... you would observe a random walk.
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Brief introduction to unit root asymptotic and tests

Define [s ] = greatest integer ≤ s (ie. round down function)

Consider, the normal random walk model:

y0 = 0

yt = yt−1 + εt

εt ∼ iidN(0, σ2)

yt = ε1 + ε2 + ... + εt ∼ N(0, tσ2) (70)

Chaoyi Chen (BCE & MNB) Non-Stationary modeling, testing and forecasting 40 / 89



Brief introduction to unit root asymptotic and tests

Suppose we have data: y1, y2, ..., yt

And we divide yt by
√
Tσ

yt ∼ N(0, tσ2)
yt

σ
√
T
∼ N(0,

t

T
) (71)

Now consider w( t
T ):

w(0) = 0

w(
t

T
) = w(

t

T
)− w(0) ∼ N(0,

t

T
− 0)

w(
t

T
) ∼ w(0,

t

T
) (72)
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Brief introduction to unit root asymptotic and tests

Putting (71) and (72) together:

yt

σ
√
T
∼ w(

t√
T
) (73)

This provides the intuition for Donsker’s Theorem which shows that
in the random walk model:

y0 = 0

yt = yt−1 + εt

εt ∼ WN(0, σ2) (74)

yt

σ
√
T
approx
∼

w(
t

T
) (75)
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Brief introduction to unit root asymptotic and tests

Now, this turns out to have some implications that form the starting
point for unit root tests.

Note that if we square (75), we get:

y2t
σ2T

∼
approx

w(
t

T
)2 (76)

Now recall that∑T
t=1 f (

t
T ) 1

T =
approx

∫ 1
0 f (r)dr .

And consider

1

σ2T 2

T

∑
t=1

y2t =
T

∑
t=1

(
yt

σ2T
)

1

T
∼
d

T

∑
t=1

w(
t

T
)2

1

T
=

approx

∫ 1

0
w(r)2dr

Chaoyi Chen (BCE & MNB) Non-Stationary modeling, testing and forecasting 43 / 89



Brief introduction to unit root asymptotic and tests

So we have

1

T

T

∑
t=1

y2t ∼
approx

σ2
∫

w(r)2dr (77)

Next, consider writing

yt = yt−1 + εt

y2t = (yt−1 + εt)
2 = y2t−1 + 2yt−1εt + ε2t
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Brief introduction to unit root asymptotic and tests

And solve for yt−1εt as:

yt−1εt =
1

2
(y2t − yt−12 − ε2t)

And sum over t to get

T

∑
t=1

yt−1εt =
1

2

T

∑
t=1

(y2t − y2t−1)−
1

2

T

∑
t=1

ε2t (78)
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Brief introduction to unit root asymptotic and tests

Now consider the first term on RHS of (78)

T

∑
t=1

(y2t − y2t−1) = (y21 − y20 ) + (y22 − y21 ) + ...

+(y2T−1 − Y 2
T−2) + (y2T − y2T−1)

and noting the cancellations

= y2T − y20

= y2T (noting y0 = 0)

Chaoyi Chen (BCE & MNB) Non-Stationary modeling, testing and forecasting 46 / 89



Brief introduction to unit root asymptotic and tests

So plugging this back into (78)

T

∑
t=1

yt−1εt =
1

2

T

∑
t=1

(y2t − y2t−1)︸ ︷︷ ︸
y2
T

−1

2

T

∑
t=1

ε2t

=
1

2
y2T −

1

2
ε2t

Now divide by T:

1

T

T

∑
t=1

yt−1εt
1

2
(
y2T
T
− 1

T

T

∑
t=1

ε2t)
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Brief introduction to unit root asymptotic and tests

And note

1

T ∑ ε2t =
approx

σ2 = var(εt) (79)

y2T
T

∼
approx

σ2w(1)2(by(76)) (80)

1

T

T

∑
t=1

yt−1εt ∼
approx

1

2
σ2(w(1)2 − 1) (81)
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Brief introduction to unit root asymptotic and tests

So far, this probably just seems like a bunch of aimless algebra but
(77) and (81) give us the tools to analyze autoregression with respect
to unit roots.

Let yt be given as in (74) consider estimating the auto regression:

yt = a1yt−1 + εt (82)

We know the true a1 = 1 to match (74) (ie. a unitroot)

But how does the estimate â1 behave?

â1 =
∑T

t=1 yt−1yt

∑T
t=1 y

2
t−1

Now substitute yt = yt−1 + εt for yt
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Brief introduction to unit root asymptotic and tests

â1 =
∑T

t=1 yt−1(yt−1 + εt)

∑T
t=1 y

2
t−1

(83)

= 1− ∑T
t=1 yt−1(yt−1 + εt)

∑T
t=1 y

2
t−1

(84)

(Noting the cancellation)

( â1︸︷︷︸
estimate

− 1︸︷︷︸
true

) =
∑T

t=1 yt−1εt

∑T
t=1 y

2
t−1

T (â1 − 1) =
1
T ∑T

t=1 yt−1εt
1
T ∑T

t=1 y
2
t−1
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Brief introduction to unit root asymptotic and tests

T (â1 − 1) ∼
approx

1
2σ2(w(1)2 − 1)

σ2
∫
w(r)2dr

= DF (85)

The RHS of (86) describes a probability distribution known as
Dickey-Fuller or unit root distribution.

It looks something like:
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Brief introduction to unit root asymptotic and tests

Intuition for non-standard distribution

w(1) ∼ N(0, 1)⇒ w(1)2 ∼ χ2
1

Also
∫

w(r)2dr is a random variable

Which means that the sampling distribution of hata1 looks like:
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Brief introduction to unit root asymptotic and tests

Thus, the behavior â1 when a1 = 1(unit root) differs substantially
from the usual behavior of regression coefficients in 2 key ways:

(A) The Dick-Fuller Distribution is not the usual normal distribution
and it is not even symmetric. And seen in the figure the probability
of â1 < 1 is much greater than the prob of â1 > 1

In practice, we rarely observe â1 ≥ 1. So the face that â1 < 1 does
not ensure that yt is stationary. This needs to be tested.
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Brief introduction to unit root asymptotic and tests

(B)T (â1 − 1) = random variable, so â1 collapses to 1 at rate
T,which is faster than the usual

√
T rate. This is known as the

super-consistency property.
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Brief Introduction to Unit Root Tests

Brief introduction to unit root tests

The Dickey-Fuller unit root test

Tests Based on the Standard t-statistic but nonstandardcritical values

In practice: Add at least an intercept

We can also add a linear trend

The Augmented Dickey Fuller (ADF) Test

Variants of the DF test(ADF test)

Unit Root in AR(2) model and relation to ADF test
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Brief introduction to unit root tests

Suppose we OLS to estimate the AR(1) model without intercept

yt = a1yt−1 + εt

When the true process for yt is a random walk (a1 = 1):

yt = yt−1 + εt

And then we ask, what is the distribution of â1?

Is it normally distributed?

Turns out the answer is: NO
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Brief introduction to unit root tests
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In the notes called “unit root theory” we derived:

T (â1 − 1) ∼
approx

1
2σ2(w(1)2 − 1)

σ2
∫
w(r)2dr

= DF (86)

The RHS of (86) describes a probability distribution known as
Dickey-Fuller or unit root distribution.

It looks something like:
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Brief introduction to unit root tests

Intuition for non-standard distribution

w(1) ∼ N(0, 1)⇒ w(1)2 ∼ χ2
1

Also
∫

w(r)2dr is a random variable

Which means that the sampling distribution of â1 looks like:
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Brief introduction to unit root tests

Thus, the behavior â1 when a1 = 1 (unit root) differs substantially from
the usual behavior of regression coefficients in 2 key ways:

1 The Dick-Fuller Distribution is not the usual normal distribution and
it is not even symmetric. And seen in the figure the probability of
â1 < 1 is much greater than the prob of â1 > 1

In practice, we rarely observe â1 ≥ 1. So the face that â1 < 1 does
not ensure that yt is stationary. This needs to be tested.

2 T (â1 − 1) = random variable, so â1 collapses to 1 at rate T,which is
faster than the usual

√
T rate. This is known as the

super-consistency property.
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The Dickey-Fuller unit root test

yt = a0yt−1 + εt

Ho : a1 = 1 unit root

HA : a1 ≤ 1 stationary

Test strategy:
T (â1 − 1) ∼

Ho approx
DF

(If Ho holds,â1 follows DF distribution)
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The Dickey-Fuller unit root test

The PDF of the test statistics looks like:

Reject if T (â1 − 1) < DFα

Just like there are probability tables for the normal, t and F
distribution. So too is there a table (actually several) for the DF
distribution.
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Rewriting the auto-regression in DF form

In unit root testing it is common to rewrite (86) as follows:

yt = a1yt−1 + εt

yt − yt−1︸ ︷︷ ︸
∆yt

= (a1 − 1)︸ ︷︷ ︸
γ1

yt−1 + εt

∆yt = γ1yt−1 + εt

(87)

Ho : γ1 = 0⇔ a1 = 1

HA : γ1 < ⇔ a1 < 1 (88)

Then
T γ̂1 = T (â1 − 1)

So we can base our test on T γ̂1
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Tests Based on the Standard t-statistic but nonstandard
critical values

Test based on the standard t statistics for a test of γ1 = 0

1 t-stat is calculated in the usual way and it just standard t-stat

2 But it does Not have a t-distribution. It always like the picture we
attached before.
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In practice: Add at least an intercept

Tests incorporating as intercept:

We first considered no intercept because it was the simplest case to
derive the theory for1

But, in practice omitting the intercept is usually too restrictive

For example, what if the series is stationary around a mean that is
different from zero

A more realistic specification is

∆yt = α0 + γ1yt−1 + εt (89)

H0 : γ1 = 0

HA : γ1 < 0

1See the companion notes in the file ”unit root theory.pdf”
Chaoyi Chen (BCE & MNB) Non-Stationary modeling, testing and forecasting 64 / 89



In practice: Add at least an intercept (continued)

Tests can again be based on either T γ̂1 or the standard t-stat

These again have non-standard DF type distributions

But they are bit different, so that different critical values are required.
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We can also add a linear trend

∆yt = α0 + α1t + γ1yt−1 + εt (90)

H0 : γ1 = 0

HA : γ1 < 0

Under the alternative hypothesis yt is trend stationary rather than
stationary. Recall

Trend Stationary = Linear Trend + Mean zero stationary component
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The Augmented Dickey Fuller (ADF) Test

The Augmented DF(ADF) test

Note DF test assumes ε ∼ WN

Appropriate for random walk, but not for general unit root.

Usually we have to add more lags of yt or ∆yt before it’s safe to
assume ε ∼ WN.

This is exactly what the Augmented DF test does.
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The Augmented Dickey Fuller (ADF) Test

The ADF test is based on:

∆yt = α0 + α1t + γ1yt−1 +
p

∑
i=1

ai∆yt−i + εt

Ho : γ1 = 0

HA : γ1 ≤ 0

The ∆yt−i act like a strainer that filters out the persistence in ∆yt so
that εt ∼ WN

The term α1t may dropped if no linear trend.

The critical values are the same as in the DF test and don’t depend
on lag length p.
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Variants of the DF test(ADF test)

When to use DF vs ADF

Ho : Random walk→ use DF

Ho : General unit root→ use ADF

If in doubt, use the ADF

A more recent test called ADF-GLS offers power improvements and is
likely the best choice. We cover this in a separate handout.
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Unit Root in AR(2) model and relation to ADF test

How do we define/test for a unit root in the AR(2) model?:

yt = a0 + a1yt−1 + a2yt−2 + εt (91)

Add/subtract a2yt−1 to this AR(2) model:

yt = a0 + a1yt−1 + a2yt−2 + a2yt−1 − a2yt−1 + εt (92)

= a0 + (a1 + a2)yt−1 − a2(yt−1 − yt−2) + εt (93)

= a0 + (a1 + a2)yt−1 − a2∆yt−1 + εt (94)

∆yt = yt − yt−1 = a0 + (a1 + a2 − 1)yt−1 − a2∆yt−1 + εt(95)

Equation (95) has ADF form.

yt will be mean-reverting (stationary) when a1 + a2 < 1 and has a
unit root when a1 + a2 = 1
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Cointegration

Co-trending and cointegration

Cointegration regression

Testing for cointegration

Spurious Regression

Cointegration and error correction

Vector error correction mode
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Co-trending and cointegration

Co-trending: Two variables, say y1t and y2t share a common trend.

Cointegration: y1t and y2t share a common stochastic trend:

y1t ∼ I (1) (unitroot)

y2t ∼ I (1).

But some linear combination, e.g. y1t − y2t , is stationary about the
mean.

Analogy:

Random walk; A dunk man walk
Conintegration: Two drunk men walking and talking
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Cointegration: a general form

Let

β̃ =

[
β̃1

β̃2

]
and yt =

[
ỹ1t
ỹ2t

]
.

A more general linear combination takes the form:

β̃
′
yt = [β̃1, β̃2]

[
y1t
y2t

]
= β̃y1t + β̃2y2t .

Let Ũt be a stationary process, e.g a stationary ARMA, with mean
zero.
Then, if

β̃
′
yt = β̃0 + Ũ0t

Ũ0t ∼ I (0) (stationary

y1t) ∼ I (1) & y2t ∼ I (1),

we say that yt = (y1t , y2t)′ is cointegrated with cointegrating vector

β̃.
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Cointegration regression

Note that linear combination of stationary random variables are
stationary.

So, if β̃1 6= 0, we have

1

β̃1

[β̃
′
yt ] =

1

β̃1

[β̃0 + Ũ0t ] =
β̃0

β̃1

+
1

β̃1

Ũ0t

is also stationary.

=⇒ 1

β̃1

[β̃] =
1

β̃1

[
β̃1

β̃2

]
=

[
1
β̃2

β̃1

]

is also a conintegrating vector.
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Cointegration regression cont.

In other words,

β′yt = [1,−β1]

[
y1t
y2t

]
=

1

β̃1

[β̃1, β̃2]

[
y1t
y2t

]
=

1

β̃1

[β̃0 + Ũ0t ].

Define β0 =
β̃0

β̃1
and U0,t =

1
β̃1

˜̃U0t also stationary,

=⇒ β′yt = [1,−β1]

[
y1t
y2t

]
= y1t − β1y2t = β0 + U0t , (96)

=⇒ y1t = β0 + β1y2t + U0,t

U0,t ∼ stationary

y2t ∼ I (1)

Cointegrating Regression.

To make the cointegration regression more complete

y1t = β0 + β1y2t + U0,t

y2t = y2t−1 + U2t , y0 = 0

U0,t & U2,t stationary

 (97)
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Intepretation of cointegration regression

Capture long-run comovements of y1t , y2t

Short-run dynamics require specification of the models (e.g
ARMA(p.q)) for U0t .

Note that U0t is neither i.id nor WN. So it does not have the usual
interpretation of a regression error in the traditional sense.

As a result, y1t & y2t do not have the usual interpretation as
dependent and independent variable.

A few results, which I leave as homework for you to demonstrate
underscore this. They are:
Homework: Let (97) hold

Show that for β1 6= 0 (97) may be rewritten as cointegrating in which
Y2t is the LHS variable & y1t is the RHS variable.
SHow that (97) may be written as a conintegrating regression of y1t on
Y2t−1,
SHow that for β1 6= 0 (97) can also be written as a cointegrating
regression of y2t on y1t−1.
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Estimation of cointegration regression

Estimation by OLS has some problems Properties of β̂1,OLS in (97)

= T (β̂1,OLS − β) =
T−1 ∑T

t=1 y2tU0t

T−2 ∑T
t=1 y

2
2t

d
−→



General Nonstandard

Distribution

⇓
Not the same as the unit root

distribution but some what like it.

Consequences:

Super-consistency [good]
Non-standard distribution [problem]:

second order bias
standard error not right
confidence interval not right
t & F tests not right
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Correction to OLS

Various corrections to OLS are available to ensure that the corrected
estimator, say β̂1,c satisfies:

T (β̂1,c − β)
approx∼ Normal.

These corrections would take some time to explain in detail, but are
avaialble in software sych as Eviews, Matlab, R. Perhaps, the most
common are:

Fully Modified least Square, (FM-OLS)
Dynamic Least Square (Leads/Lags), (DOLS)

The DOLS is referred to as a lags & leads estimator because it adds
lags & leads of ∆y2t into the regression to strain out the impatc of
the cointegrating residual U0,t that correlated with ∆y2t±j ,

y1t = β0 + β1y2t +
p

∑
j=−p

δj∆y2t−j + V0,t , (DOLS).

Then robust (HAC) standard errors can be used to construct
inference on β1 (see Stock Watson for futher details)
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Testing for cointegration

The key assumptions underlying (97) are:

1 y1t and y2t have unit roots.
2 U0,t is stationary ⇐⇒ (y1t , y2,t) is cointegrated.

Before estimating & using cointegrating regression, both assumptions
must be tested.

Assumption (1) shoudl first be tested using the unit root tests
dicussed previously.

If we rejrect unit roots, (1) fails & we don’t employ cointegration
methods.

If we fail to reject unit roots in y1t & y2t , we proceed to test
Assumption (2) using a cointegreting test as discussed in the next
slide.

Only if both A.1 and A.2 are verified, we can safely proceed to use
cointegration methodology.
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Cointegration test when β1 is known

Key insight:
(y1t , y2t) cointegrated with cointegrating vector (1, -β1)
⇐⇒β0 + U0,t = y1t − β1y2t ∼ stationary.

Method:
Step 1. Form V0,t = β0 + U0,t = y1t − β1y2t .
Step 2. Test U0,t , for a unit root in V0,t including an intercept , but
no trend.
Step 3. Use the result to determine cointegration:

1 Fail to reject unit root =⇒ suggests U0,t may not be stationary =⇒
Fail to reject no cointegration =⇒ Do not use cointegration methods.

2 Reject the unit root=⇒ U0,t stationary =⇒ reject null hypothesis of no
cointegration =⇒ cointegration =⇒ use cointegration methods.

Formal Hypothesis

H0: (y1t , y2t) not cointegrated with conitegrating vector (1, -β1)
⇐⇒ U0,t has a unit root.

HA: (y1t , y2t) cointegrated with conitegrating vector (1, -β1) ⇐⇒
U0,t is stationary.
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Cointegration test when β1 is not known

H0: (y1t , y2t) not cointegrated

⇐⇒ y1t − β1y2t has unit root for any β1

}
No-cointegration (Null)

HA: (y1t , y2t) cointegrated

⇐⇒ y1t − β1y2t is stationary for some β1

}
Yes-cointegration (Alt)

Key Points
∗ Still test y1t − β1y2t for unit root

y1t − β1y2t ∼ I(1) =⇒ no conitegration.
y1t − β1y2t ∼ I(0) =⇒ conitegration.

∗ But now, must estinmate β̂1 first. So essentially conduct unit root test

on y1t − β̂1y2t .

∗ However, estimating β̂1 changes the distribution of the unit root tests

on y1t − β̂1y2t .
∗ Therefore, alternative critical values must be employed.

The Engle-Granger- ADF Test (EG-ADF) is a cointegration test that
follows exactly the procedure discussed above, providing teh correct
critical values. It is available on programs such as Eviews, Matlab, R.
See the Stock & Watson textbook for futher details.
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Spurious Regression

Discoverd by Granger-Newbold (1974) and explained by Phillips
(1986, 1998).

Consider two unit roots processes, y1t & y2t , that are not
cointegrated and in fact have no relation whatsoever Graph

Say we run the regression: y1t = β̂0 + β̂1y2t

In principle, there is no relation between y1t & y2t , so we ought to
find β1 = 0 & R2 = 0.

However, Granger & Newbold (1974) found that
1 β̂1 tends to be significantly different from zero.
2 The R2 tends to be large.

Thus the regression is spurious in the sense that it uncovers a
relationship between unrelated series.

Phillips (1998) provides smome intuition: The stochastic trends in y1t
are partially picked up by the stochastic trends in y2t despite the lacks
of any causal relation between two.
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Spurious Regression & the importance of cointegration and
unit root tests

Spurious regression can provide highly misleading results

Spurious regression occurs when both your y (y1t) and x (x1t)
variables:

1 have unit roots
2 are not cointegrated

So if you run a time series regression of y1t on xt (or xt−1) without
testing for unit roots & cointegration, you risk running a spurious
regression.
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Cointegration and error correction

Suppose y1t = β1y2t + U0,t and U0,t is stationary

Long-run comovement: y1t & y2t move together over the long-run.

Now consider modeling ∆y1t & ∆y2t .

Suppose ∆y1t & ∆y2t as autoregressions, e.g.

∆y1t = a1(0) +
p

∑
i=1

a11(i)∆y1t−i + ε1t

∆y2t = a2(0) +
p

∑
i=1

a22(i)∆y2t−i + ε2t .

Then where is the mechanism by which y1t & y2t move together in
the long run?
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Cointegration and error correction Cont.

We can add this by as what is known as an error correction term. To
simplify, we omit AR terms for now,

∆y1t = a0 +

U0t︷ ︸︸ ︷
α1(y1t−1 − β1y2t−1) +ε1t

∆y2t = b0 + α2(y1t−1 − β1y2t−1)︸ ︷︷ ︸
U0t

+ε2t .

y1t−1 − β1y2t−1) = 0 =⇒ (y1t , y2t) in long-run equilibrium =⇒ no
adjustment needed

y1t−1 − β1y2t−1) 6= 0 =⇒ Out of equilibrium =⇒ Either ∆y1t and/or
∆y2t should adjust to restore equilibrium.

Chaoyi Chen (BCE & MNB) Non-Stationary modeling, testing and forecasting 85 / 89



Cointegration and error correction: an example

Assume β1 > 0, α1 < 0, α2 > 0.
Suppose y1,t−1 > β1y2,t−1:

(A)
1 y1,t−1 − β1y2,t−1 > 0
2 α1 < 0
3 α1

(−)
− (y1,t−1 − β1y2,t−1)︸ ︷︷ ︸

(+)

= (−).

We expect a negative influcence on ∆y1t pushing y1t back down to
β1y2t to restore equilibrium.

(B)
1 y1,t−1 − β1y2,t−1 > 0
2 α2 > 0
3 α2

(+)
− (y1,t−1 − β1y2,t−1)︸ ︷︷ ︸

(+)

= (+).

We expect a positive influcence on ∆y2t pushing β1y2t back up to the
equilibrium value.

Terminology: β1 ≡ conintegrating coefficient. y1,t−1 − β1y2,t−1 =
deviation from long-run equilibrium. α2(y1,t−1 − β1y2,t−1) = error
correction term. α1, α2 = speed of adjustment parameters.
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Vector error correction model

In practivce, we combine the error correction term with lags of both
∆y1t and ∆y2t ,

∆y1t = a1(0) + α1(y1,t−1 − β1y2,t−1) +
p

∑
i=1

a11(i)∆y1t−i +
p

∑
i=1

a12(i)∆y2t−i + ε1t

(98)

∆y2t = a2(0) + α2(y1,t−1 − β1y2,t−1) +
p

∑
i=1

a21(i)∆y1t−i +
p

∑
i=1

a22(i)∆y22t−i + ε2t .

The model above is known as a Vector Error Correction Model (VECM). To see
why, we proceed to next slide
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Vector error correction model Cont.

To see why (98) is known as a VECM, we rewrite (98) in a vector (or
matrix) form:

[
∆y1t
∆y2t

]
︸ ︷︷ ︸

∆yt

=

[
a1(0)
a2(0)

]
︸ ︷︷ ︸

A(0)

+

[
α1(y1,t−1 − β1y2,t−1)
α2(y1,t−1 − β1y2,t−1)

]
+ ∑p

i=1

[
a11(i) a12(i)
a21(i) a22(i)

]
︸ ︷︷ ︸

A(i)

[
∆y1t−i
∆y2t−i

]
︸ ︷︷ ︸

∆yt−i

+

[
ε1t
ε2t

]
︸ ︷︷ ︸

εt

=⇒ ∆yt = A(0) +

[
α1(y1,t−1 − β1y2,t−1)
α2(y1,t−1 − β1y2,t−1)

]
+ ∑p

i=1
A(i)∆yt−i + εt .

Note that: [
α1(y1,t−1 − β1y2,t−1)
α2(y1,t−1 − β1y2,t−1)

]
=

[
α1

α2

]
︸︷︷︸

α
2×1

[
1 −β1

]︸ ︷︷ ︸
β′

1×2

[
y1,t−1
y2,t−1

]
︸ ︷︷ ︸

yt−1
2×1

=⇒ ∆yt︸︷︷︸
2×1

= A(0)︸︷︷︸
2×1

+ α︸︷︷︸
2×1

β′︸︷︷︸
1×2

yt−1︸︷︷︸
2×1

+∑p

i=1
A(i)︸︷︷︸
2×2

∆yt−i︸ ︷︷ ︸
2×1

+ εt︸︷︷︸
2×1

.

This is the VECM in its matrix form.
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VECM estimation

Estimation:

Step 1: estimate β̂ using cointegrating regression.

Step 2: estimate ˆA(0), α̂, ˆA(i) using a regression with β replaced by β̂.

Note that step (89) can be done by two separate regressions or by
one vector regression as they will be numerically equivalent.
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