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Brief Introduction to ARMA Models

White Noise Process

Uncorrelatdeness and weak exogeneity

Moving Average Processes

Autoregressive Models

Autoregressive Moving average Processes–ARMA(p,q)models
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White Noise Process

”The basis building block”

A white noise process εt satisfies:

E [εt ] = 0 for all t (mean zero) (1)

E [ε2t ] = σ2 for all t (constant variances) (2)

Cov(εtεt−s) = 0 for all t, all s 6= 0 (3)
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Relation between white noise process,normality and i.i.d
process

Assume εt has mean zero and variance σ2

i .i .d ⇒ whitenoise (4)

white noise ; i .i .d (5)

white noise + normality ⇒ i .i .d (6)
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Uncorrelatdeness and weak exogeneity

Weak exogeneity Etεt+1 = 0

Uncorrelatedness E [εtεt+s ] = 0, s 6= 0

Weak exogeneity implies Uncorrelatedness
Proof:

Suppose: Etεt+1 = 0, all t (weak exogeneity)
Then: Letting s > 0

E [εtεt+s ] = E [Et+s−1[εtε(t+s)]] (7)

= E [εt Et+s−1[εt+s ]︸ ︷︷ ︸
0 by weak exogeneity

] (8)

= E [εt0] = 0 (9)
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Uncorrelatdeness and weak exogeneity

This means that the assumptions

Etεt+1 = 0 and E [ε2t ] = σ2

also satisfy the white noise assumptions above
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Intuition on white noise process:

White noise process has no memory

The name ‘white noise’ is due to its putting equal weight on cycles of
all frequencies, similar to white noise or white light.

It is a very simple building block

It is easy to simulate on Matlab or even by repeatedly rolling dice or
flipping a coin.

For example: you could simulate white noise Bernoulli type Process
by repeated coin toss:

Just let t the tth toss of the coin and define

εt =

{
1 toss t is heads

−1 toss t is tails
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Moving Average Processes: Example: Average Winnings

Let εt be white noise

xt =
q

∑
i=0

bi εt−1 = b0εt + b1εt−1 + b2εt−2 + ... + bqεt−q

This called a Moving Average Process of order q or MA(q) for short.

Examples: A) Average winnings over two fair bets

εt =

{
1 Heads (win)

−1 Tails (lose)

εt is your one period earnings
Your average earnings over the last two periods (dice rolls) is given by

xt =
1

2
εt +

1

2
εt−1, MA(1)

This is literally an average that moves, explaining the name
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Moving Average Processes: Example Long-Horizon Returns

Example B: Long-horizon (log) stock returns
Recall that

rt(k) =
k−1
∑
i=0

rt−i = rt + rt−1 + . . . rt−(k−1)

Suppose that the one-period log return is white noise

Then the long horizon return follows a moving average:

rt(k) ∼ MA(k − 1)
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Moving Average Processes: Example long-horizon returns

If we observe a white noise monthly (log) return then:

The quarterly return (3 months) is MA(2)

The yearly return (12) is MA(11)

If we observe white noise daily log return then the weekly (5 day)
return is MA(4)

If we observe white noise weekly log return, then the monthly (4
week) return is MA(3)
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Example: Shock whose impact gradually fades

Example C: Shock whose impact gradually fades (learning &
forgetting)

xt = Number of French words I know at time t (stock)

µ + εt = Number of new French words I learn at time t (flow)

Suppose that I forget 1/3 of the new words after I just learned after
one month, another 1/3 after two months, and the remaining third
after three months.

Let εt be white noise. Then my stock of french vocabulary follows an
MA(2) with intercept:

xt = (µ + εt) +
2

3
(µ + εt−1) +

1

3
(µ + εt−2)

= 2µ + εt +
2

3
εt−1 +

1

3
εt−2
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Autoregressive Models

Let εt be white noise and let

yt = a0 + a1yt−1 + a2yt−2 + ... + apyt−p + εt

Then we call yt an autoregressive process of order p or AR(p)
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Autoregressive Models: Oversimplified Examples

Examples (Over-simplified, but illustrative)
A) Wealth Accumulation

Wt = Wealth at time t (10)

St = Savings at time t (11)

i = constant interest rate(over-simplified) (12)

Wt = (1 + i)Wt−1 + St

Suppose that every year your target savings is S̄ , but you miss this
target by an random amount(ε):

St = S̄ + εt

Wt = S̄︸︷︷︸
a0

+ (1 + i)︸ ︷︷ ︸
a1

Wt−1 + εt AR(1)
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Autoregressive Models: Oversimplified Examples

B) Capital Accumulation
Suppose each year your firm has a target investment of Ī and you
miss this target by εt , which is white noise

Ī = target investment It = Ī + εt actual investment

Kt = Capital Stock at time t δ = Depreciation rate

Then the capital stock follows an AR(1)

Kt = Kt−1 − δKt−1 + It (13)

Kt = (1− δ)Kt−1 + Ī + εt (14)

Kt︸︷︷︸
yt

= I︸︷︷︸
a0

+ (1− δ)︸ ︷︷ ︸
a1

Kt−1︸︷︷︸
yt−1

+εt (15)
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Autoregressive Moving average Processes–ARMA(p, q)
models

εt = WN(0, σ2) WN means the white noise here (16)

yt = α0 +
p

∑
i=1

αiyt−1︸ ︷︷ ︸
AR(p)

+
q

∑
i=0

bi εt−i︸ ︷︷ ︸
MA(q)

ARMA(p, q) (17)

yt = a0 + a1yt−1 + a2yt−2 + ... + apyt−p + εt + b1εt−1 + ... + bqεt−q
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Expressing MA, AR, and ARMA models using summation
and lag notation. In brief:

a(L)yt = b(L)εt

where

a(L) = 1−
p

∑
i=1

aiL
i = 1− a1L− a2L

2 − . . .− apL
p

and

b(L) = 1 +
q

∑
i=1

biL
i = 1 + b1L+ b2L

2 + . . . bqLq

At home: Rewrite MA, AR, and ARMA models first using
summation notation and then using lag notation
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Stationarity

Stationary and Stationary restrictions

Strict Stationary

Covariance Stationary

When does covariance Stationary holds?

Moving Average Models Example

Stationary of AR(1) when|α1| < 1

Non-stationary Example: Random walk
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Stationary and Stationary restrictions

Stationary and Stationary restrictions

Define Y =
d
X to mean that Y and X share the same CDF.1

Note:

This does NOT mean that x = y

It does mean that x and y are drawn from the same distribution.

And it means that any probability statement you make about Y is
true for X and vice versa.

e.g: If P(0 ≤ Y ≤ 1) = 1
2 ,then P(0 ≤ X ≤ 1) = 1

2

1Recall that this is Short for Cumulative Distribution Function, which is the function
F (x) = P(X < x) where P stands for probability
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Stationary and Stationary restrictions

We can apply the same concept to a vector of random variables.

Let y
k∗1

= (y1, y2, ..., yk)
′

and x
k∗1

= (x1, x2, ..., xk)
′

Then by y =
d
x , we mean that x and y share the same joint CDF
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Strict Stationary

Intuitive Definition: yt is strictly stationary if its distribution does
not change over time.

Formal Definition: The sequence yt is strictly station if for all t and
s.

yt =
d
yt+s (18)

And for all t1, t2, ..., tk and s

(yt1, yt2, ytk)
d
= (yt1+s , yt2+s , ..., ytk+s) (19)
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Strict Stationary

Discussion equation18 tells us that distribution of yt doesn’t change
over time.

Suppose we let t1 = t and t2 = t + 1 and plug this into equation19.
Then we get:

(yt , tt + 1) =
d
(yt+s , yt+1+s)

Which tells us that the joint distribution of (yt , tt+1) also doesn’t
change over time.
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Covariance Stationary

Intuitive definition: yt is covariance stationary if the first 2
moments of yt(the expectation, the variance and the covariance)
don’t change over time.

Formal Definition: The sequence yt is covariance stationary if for a
t,h and s.

E [xt ] = E [xt+s ] (20)

var(xt) = var(xt+s) (21)

cov(xt , xt+h) = cov(xt+s , xt+s+h) (22)
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Covariance Stationary

Discussion:
equation 22 says that cov(xt , xt+h) depends only on h, the distance
in time between the two variables, but not on t.
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When does covariance Stationary holds?

How to check Covariance Stationary?
1) calculate E [yt ]
2) calculate var [yt ]
3) calculate cov(yt , yt+h)

If any of these are infinite vary with t then yt is not stationary. If they
are finite and do not vary with t then yt is Covariance Stationary.
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Moving Average Models

(A) MA(1) is always stationary

yt = εt + β1εt−1, εt ∼ WN(0, σ2)

Step 1:

E [yt ] = E [εt + β1εt−1] = E [εt ]︸ ︷︷ ︸
0

+β1 E [εt−1]︸ ︷︷ ︸
0

= 0,

which is finite and dot dependent on t

Step 2:

var(yt) = var(εt + β1εt−1) (23)

= var(εt) + var(β1εt−1) + 2cov(εt , εt−1) (24)

= σ2 + β2
1σ2 (25)

= (1 + β2
1)σ

2 finite & not depending on t (26)
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Moving Average Models

Step 3: Calculate cov(yt , yt+h),h = 1, 2, 3, ...

When h = 1

yt = εt + β1εt−1, εt ∼ WN(0, σ2) (27)

cov(yt , yt+1) = cov(εt + β1εt−1, εt+1 + β1εt) (28)

= cov(εt , β1εt) (29)

= β1cov(εt , εt) (30)

= β1var(εt) (31)

= β1σ2 Finite and does not depend on t (32)
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Moving Average Models

h = 2

yt = εt + β1εt−1, εt ∼ WN(0, σ2) (33)

cov(yt , yt+2) = cov(εt + β1εt−1, εt+2 + β1εt+1) (34)

= 0 (35)

cov(yt , yt+h) = 0 for h = 3, 4, 5, same reason.

Try at home: Argue that MA(2) is covariance stationary.

General Rule: Finite order moving average processes.i.e,MA(k) for
any finite k, are always stationary.
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Stationary of AR(1) when |α1| < 1

Stationary AR(1) model

yt = α0 + α1yt−1 + εt (36)

|α1| < 1 (37)

Et−1εt = 0 (38)

var(εt) = σ2 (39)
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Stationary of AR(1) when |α1| < 1

To observe that this model is stationary, first convert it to its MA(∞)
representation

yt = α0 + α1yt−1 + εt (40)

yt − α1yt−1 = α0 + εt (41)

(1− α1L)yt = α0 + εt (42)

yt =
1

1− α1L
(α0 + εt) (43)

=
∞

∑
j=0

(α1L)
j (α0 + εt) (44)

=
∞

∑
j=0

αj
1 (L

jα0)︸ ︷︷ ︸
α0

+
∞

∑
j=0

αj
1 L

j εt︸︷︷︸
εt−j

(45)
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Stationary of AR(1) when |α1| < 1

MA(∞) representation of AR(1)

yt = α0

∞

∑
j=0

αj
1 +

∞

∑
j=0

αj
1εt−j (46)

=
α0

1− α1
+

∞

∑
j=0

αj
1εt−j (47)

Now confirm covariance stationary

E [yt ] = E [
α0

1− α1︸ ︷︷ ︸
c

+
∞

∑
j=0

αj
1εt−j ] (48)

=
α0

1− α1
+

∞

∑
j=0

αj
1 E [εt−j︸ ︷︷ ︸

0

] =
α0

1− α1
(49)
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Stationary of AR(1) when |α1| < 1

And for the variance:

var [yt ] = var [
α0

1− α1︸ ︷︷ ︸
c

+
∞

∑
j=0

αj
1εt−j ] (50)

= var

(
∞

∑
j=0

αj
1εt−j

)
(51)

=
∞

∑
j=0

(αj
1)

2 var(εt−j )︸ ︷︷ ︸
σ2

(εt uncorrleated) (52)

= σ2
∞

∑
j=0

(α2
1)

j (53)

=
σ2

1− α2
1

(finite and not depend on t) (54)

same result for cov(yt , yt+h),but we will skip this to save time.
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Non-stationary Example: Random walk

Random walk model(AR(1) with α1 = 1)

yt = yt−1 + εt , t = 1, 2, 3, ... (55)

y0 = 0 [Initialization] (56)

Et−1εt = 0 (57)

var(εt) = σ2 (58)
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Non-stationary Example: Random walk

We calculate the variances as:

var(y0) = 0 (59)

var(y1) = var(y0 + ε1) = var(ε1) = σ2 (60)

var(y2) = var(y1 + ε2) = var(ε1 + ε2) = 2σ2 (61)

var(y3) = 3σ2 (62)
... (63)

var(yt) = tσ2 (variance depends on t,non-stationary) (64)

Note that if we did not initialize then var(yt) would be infinite
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Non-stationary Example: Random Walk (continued)

Note: The first difference of a random walk is white noise, which is
both stationary and unpredictable white noise. Since

yt = yt−1 + εt

it follow that
∆yt = yt − yt−1 = εt

Example: If log stock price lnPt follows a random walk then the
return (excluding dividends),

rt = ∆ lnPt

is white noise and unpredictable.
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Relationship between Covariance and Strict Stationary

Strict Stationary ⇒ Covariance Stationary(65)

Covariance Stationary ; Strict Stationary (66)

Covariance Stationary + Normality ⇒ Strict Stationary (67)

Intuition
The distribution determines the moments [equation65]
But the first 2 moments do not by themselves determine the
distribution[equation66]
Except, if the data is normally distributed[equation 67]
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Invertibility

Invertibility

Invertibility:MA(1) process

Over-differenced process as non-invertible example

Non-invertibly
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Invertibility

1 Intuitive Definition: A process is invertible if it can be approximated
by a finite order auto-regressive process.

2 We can estimate the AR(p) model by OLS so can estimate an
invertible process

3 The MA(1) model
yt = εt − β1εt−1

has an AR(∞) representation of the form:2

yt = −
∞

∑
j=0

βj
1yt−j + εt , AR(∞) representation (68)

4 When β < 1 we drop the distant lags to approximate this by an AR(p)

2We derive this a few slides later
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Invertibility (continued)

yt = −
∞

∑
j=0

βj
1yt−j + εt , AR(∞) representation (69)

1 However β = 1 the distant lags are too important to drop and the
process

yt = εt − εt−1

is said to be over-differened.

2 This is because it differences an already stationary process

3 Below we provide a more precise technical definition and the
derivation of equation (68)
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Invertibility

Invertibility An ARMA process is invertible if it can be expressed as
AR process that is either finite order or convergent

Finite AR process: An AR(p),where p is finite.

Convergent AR process:

yt = α0 +
∞

∑
j=1

αjyt−j + εt , where
∞

∑
j=1

|αj | < ∞

Intuition: We can approximate it by an AR(p) for finite p
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Invertibility:MA(1) process

Invertible MA(1) process:

yt = εt − β1εt−1 |β1| < 1 (Invertibility condition) (70)

Et−1εt = 0 var(εt) = σ2 (71)

Can express this as a convergent AR(∞)

yt = εt − β1Lεt (72)

= (1− β1L)εt (73)

1

1− β1L
yt = εt (74)

∞

∑
j=0

βj
1L

jyt = εt (75)

∞

∑
j=0

βj
1yt−j = εt (76)
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Invertibility:MA(1) process

Pull out the j = 0 term in the sum from the top of the last page:

∞

∑
j=0

βj
1yt−j = εt (77)

β0
1yt−0 +

∞

∑
j=1

βj
1yt−j = εt (78)

yt +
∞

∑
j=1

βj
1yt−j = εt (79)

(80)

Solving for yt it is recognizable as an AR(∞):

yt = −
∞

∑
j=0

βj
1yt−j + εt , AR(∞) representation (81)

Chaoyi Chen (BCE & MNB) Stationary ARMA modeling and forecasting 42 / 45



Invertibility:MA(1) process

The MA(∞) representation:

yt = −
∞

∑
j=0

βj
1yt−j + εt , (82)

is a convergent AR(∞) because

∞

∑
j=0

|β1|j =
1

1− |β1|
< ∞, for |β1| < 1

That means that the MA(1) is invertible
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Over-differenced process as non-invertible example

When β1 = 1 the process is said to be over-differenced since

yt = εt − εt−1 = ∆εt (83)

takes a first difference of a series that is already stationary, and thus
not requiring differencing.

It is an example of a non-invertible process. To convince yourself
simply Substitute β1 = 1 into the sum in the convergence condition:

∞

∑
j=1

|β1|j =
∞

∑
j=1

1 = ∞

Since this sum is infinite the AR(∞) is not convergent

Therefore the MA(1) process with |β1| = 1 is not invertible.

Chaoyi Chen (BCE & MNB) Stationary ARMA modeling and forecasting 44 / 45



Non-invertibly

Non-invertible cause estimation problems

Intuitively, we cannot estimate an MA(1) directly by a regression

What if we could approximate it by AR(p) where p is not too large?

If its invertible, then we can do this by omitting the terms for large j
in the AR(∞)

yt = −
∞

∑
j=0

βj
1yt−j + εt , AR(∞) representation (84)

since βj
1 gets small when j gets large if β < 1

But this is surely not the case when β = 1
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