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Outlines

Testing the accuracy of the out-of-sample forecast Jump [Online
Lecture]

Tests for Forecast Data Mining Jump [Self-study if you have interest
:)]
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Testing for forecast bias

Recall that when we use Etyt+1 as our forecast for yt+1, it is
conditionally unbiased by construction. i.e. if we set ft ≡ Etyt+1,
then Etyt+1 = ft by construction.

However, in practice, it’s not so easy to find an unbiased forecast.

In particularly, we must
1 choose a model for yt+1 that we will use to construct Em

t yt+1, where
”m” refers to the model used to calculate Etyt+1. Now,

f mt = EM
t yt+1

{
= Etyt+1, if m is correct model

6= Etyt+1, m is wrong model.

Etyt+1 = Etyt+1 = Em
t yt+1 + (Etyt+1 − Em

t yt+1)︸ ︷︷ ︸
forecast bias

2 Estimate parameters of model to use ŷmt+1 in place of Em
t yt+1.
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Testing for forecast bias Cont.

The upshot is that in practice we don’t know if our forecasts are
unbiased or not & we might want to test to see if they are.
Likewise, if we have two competing forecast models & we found that
one was biased and the other unbiased, then we discard biasded
forecast and keep the unbiased forecast.
Let ŷmt+h|t be our h period forecast using model m.

We want to test:

H0 : Etyt+h = ŷmt+h|t (model m provides unbiased forecast) (1)

HA : Etyt+h 6= ŷmt+h|t (model m provides biased forecast).

Consider the following regression (known as a Miner-Zarnowitz
regression)

yt+h = β0 + β1ŷ
m
t+h|t + εt+h; Etεt+h = 0. (2)

Calculate Etyt+h in (2): Etyt+h = β0 + β1ŷ
m
t+h|t .

So, Etyt+h = ŷmt+h|t if β0 = 0 and β1 = 1.
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Testing for forecast bias Cont.

That means that we can reformulate the hypothesis in (1) as:

yt+h = β0 + β1ŷ
m
t+h|t + εt+h; Etεt+h = 0

H0 : (β0, β1) = (0, 1) (ŷmt+h|t unbiased)

HA : (β0, β1) 6= (0, 1) (ŷmt+h|t biased)

 (3)

This can be implemented via an F test.
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Testing for predictability of forecast errors

Suppose re-arrange (3) as:

(yt+h − ŷmt+h|t)︸ ︷︷ ︸
êm
t+h|t︸ ︷︷ ︸

forecast error

= β0︸︷︷︸
γ0

+ (β1 − 1)︸ ︷︷ ︸
γ1

ŷmt+h|t + εt+h.

êmt+h|t = γ0 + γ1ŷ
m
t+h|t + εt+h,

H0 : (γ0, γ1) = 0,

HA : (γ0, γ1) 6= 0.

 (4)

The hypothesis in (4) is identical to the one in (3) since

β1 = 1⇐⇒ γ1 ≡ (β1 − 1) = 0.

If forecast is unbiased, then forecast error is unpredictable.
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Testing for predictability of forecast errors Cont.

Nevertheless, (4) suggests a slightly different interpretation.

If γ1 6= 0, then ut us possible to predict or forecast errors (êmt+h|t).

But if our forecast ŷmt+h|t satisfies Etyt+h = ŷmt+h|t , then it should not

be possible to predict the forecast error using information
available at the time of forecast since:

Et ê
m
t+h = Et

[
yt+h − ŷmt+h|t

]
= Etyt+h − ŷmt+h|t = 0 (if Etyt+h = ŷmt+h|t).

Intuitively, if we can predict the forecast error, we should be able to
improve our forecast so as to reduce forecast error.

For 1-horizon (h = 1) forecast the condition Et ê
m
t+1 = 0 further

implies that.

This principle is more general than the test in (3).
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Testing for predictability of forecast errors: a generalized
view

If any variable known at the time of the forecast (time t) can predict
the forecast error, then our forecast is not optimal and could be
improved. So we may generalize (3) to

êmt+h|t = γ0 + γ1xt + εt+h

H0 : (γ0, γ1) = (0, 0) (unpredictable forecast errors

⇐⇒ optimal forecast)

HA : (γ0, γ1) 6= (0, 0) (predictable forecast errors

⇐⇒ sub-optimal forecast)


(5)

Here xt be any variable (or vector of several variables available at
time t). This might include

1 yt , yt−1, yt−2...
2 zt , zt−1, zt−2, ... ←− another variable
3 ŷmt - our forecast as in (3)
4 ŷm∗t - a forecast from another model

Chaoyi Chen (BCE & MNB) Testing the accuracy of the out-of-sample forecast 9 / 42



Testing for predictability of forecast errors: a generalized
view Cont.

In fact, for the one-period ahead forecast (h = 1), if the forecast is
unbiased (Et ê

m
t+1|t = 0), then it must be serially uncorrelated

(cov(êmt+1|t , ê
m
s+1|s) = 0) for s 6= t.

That means that we can use tests such as the Box-Pierce &
Ljung-Box statistics to test for unpredictability of the forecast errors.

Likewise, we could estimate an ARMA model for êmt+1|t & reject

unpredictability if any of the coefficients showed up significant.

But, for longer horizon forecasts (h > 1), be careful because

Et ê
m
t+h|t = 0 does NOT imply, e.g, cov(êmt+h|t , ê

m
t+h−1|t) = 0
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Measure of forecast accuracy

What if we have two forecasts neither of which is unbiased and both
of whose forecast errors are predictable.

On one hand, we know there is a better forecast model out there.

On the other hand, we need to choose one of our two methods for
immediate use.

How do we compare two sub-optimal forecasts?

Need to define a loss function L̃(ŷmt+h|t , yt+h), which tells us the cost

of our forecasting error.

Usually, the loss function can be written in terms of the forecast error

L̃(ŷmt+h|t , yt+h) = L
[
(ŷt+h|t − ŷmt+h|t)

]
= L(êt+h|t).
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Measure of forecast accuracy cont.

It make sense that L(êmt+h) should obtain a minimum value of zero at
ê = 0.

A symmetric loss function penalizes over and undershooting equally
Graph

An asymmetric loss function penalizes overshooting more than
undershooting or vice versa Graph

e.g. Forecasting tornado: better safe than sorry

Actual

Forecast
Tornado No Tonardo

Tornado X Bad
No Tornado Really Bad X
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Measure of forecast accuracy cont.

A loss function can be derived from a decision problem in which the
forecast will play a role.
e.g.: An investor might use a loss function derived from a mean
variance trade-off

This is what should be done when making forecasts for a specific
decision.

On the other hand, when reporting your forecast to other economists,
it is more common to use a few commonly accepted loss functions
given in the following slides

Chaoyi Chen (BCE & MNB) Testing the accuracy of the out-of-sample forecast 13 / 42



Loss function definition

L(êmt+h|t) ≡ loss using ŷmt+h to forecast yt+h.

E [L(êmt+h|t)] ≡ expected or population loss using model - m to

forecast yt+h.

L̄ =
1

T 2 ∑T

t=T−T2+1
L(êmt+h|t)

≡ Sample average loss using model-m to forecast the T2 points in
our forecast sample (yT−T2+h, ..., yT+h).
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Two common loss functions: MSE

Mean Squared Error (MSE)

LMSE (êt+h|t) = ê2
t+h|t (squared prediction error)

E
[
LMSE (êt+h|t)

]
= E

[
ê2
t+h|t

]
(expected squared prediction error)

L̄MSE =
1

T2
∑T

t=T−T2+1
ê2
t+h|t (mean-squared prediction error).
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Two common loss functions: MAE

Mean Absolute Error (MAE)

LMAE (êt+h|t) = |êt+h|t | (absolute value of prediction error)

ELMAE = E |êt+h|t | (expected absolute prediction error)

L̄MAE =
1

T2
∑T

t=T−T2+1
|êt+h|t | (mean absolute prediction error)
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Two common loss functions: Remark

E [LMSE ] & E [LMAE ] are population value & are ultimate interest.

L̄MSE & L̄MAE are the sample averages that we observe & report in
practice.

In squaring ê, the MSE also squares units of observation. e.g.
$ −→ $2. To get back tothe original units its common to report
RMSE =

√
L̄MSE instead/ in addition to MSE = L̄MSE .

By T2, I mean the number of out-of-sample forecast errors you use to
calculate the loss. I do not mean the original sample size.

In practice, it is the empirical loss function L̄ that is calculated.

Usually, the idea is to compare this function forecasts from two or
more forecast methods to find which produces the lowest loss.

Informally, this is often referred to as a “horse race”.
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Two common loss functions: Remark cont.

See previous lecture note for instructions on creating the sample of
T2, out-of-sample forecast errors to which the loss functions may
apply.

The MSE squares the units of obervation (e.g. $ become $2).
Converting to RMSE converts back to the original units.
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Testing to see if one forecast out-performs another

If we compare two forecasts by their MSE, RMSE, or MAE, one
forecast will always “win” the horse race.

Does this mean that the winner is inherently better (according to our
loss function)?

Or did the winner simply have good luck on these particular forecasts?

In other word, is the difference in, say MSE, significant?

To do this, we need a test to compare the two forecasts.
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The Diebold-Mariano (DM) test

Diebold-Mariano test refers to: Enders p.84-86 & Dielbold p.299-300.

Goal: compare two forecasts using a loss function & using a statistical
test to identify significant differences.
Notation I use below:

Name Model 1 Model 2 Difference
model m1 m2

forecast horizon h=1 h=1
forecast errors êm1

t+1|t êm2
t+1|t

forecast errors loss L(ê
m1
t+1|t ) L(ê

m2
t+1|t ) dt+1 ≡ L(ê

m1
t+1|t )

−L(êm2
t+1|t ))

expected loss E [L(ê
m1
t+1|t )] E [L(ê

m2
t+1|t )] E [dt+1 ] = E [L(ê

m1
t+1|t )]

−E [L(êm2
t+1|t )]

sample average loss L̄m1 L̄m1 d̄ = 1
T2

∑T
t=T−T2+1dt+1

= ∑T
t=T2+1L(ê

m1
t+1|t ) = 1

T2
∑T
t=T−T2+1L(ê

m2
t+1|t ) = L̄m1 − L̄m2

New definitions are:
1 dt+1 = L(êm1

t+1|t)− L(êm2
t+1|t)

2 E [dt+1] = E [L(êm1
t+1|t)]− E [L(êm2

t+1|t)]

3 d̄ = L̄m1 − L̄m2 = sample mean (dt+1)
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The Diebold-Mariano (DM) test: hypothesis

Null hypothesis: EQUALLY GOOD FORECAST MODELS

Alternative hypothesis: One of the two forecasts is better (according
to L)

H0 : E [Lm1 ] = E [Lm2 ]⇐⇒ E [d ] = 0

HA : E [Lm1 ] 6= E [Lm2 ]⇐⇒ E [d ] 6= 0

Note: It is the population loss function we want to compare but the
sample loss function that we observe
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The Diebold-Mariano (DM) test: intuition

Small positive or negative values of d̄ = L̄m1 − L̄m2 support H0 large
absolute values support HA.

How large? Need to know distribution of d̄ = L̄m1 − L̄m2 .

DM showed that d̄ ∼
approx

N(d , var(d̄)) for large T2

So, when H0 : d = 0 holds d̄ ∼
approx

H0

N(0, var(d̄))

which implies:

d̄√
var(d̄)

∼
approx

H0

N(0, 1) for large T2
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The Diebold-Mariano (DM) test: intuition cont.

var(d̄) unkown

Suppose we have a good estimator, say v̂ar(d̄) for var(d̄). Then,
v̂ar(d̄) =

approx
var(d̄) for large T2.

Then, z ≡ d̄
v̂ar (d̄)

∼
approx
H0

N(0, 1)

Reject for |z | > z α
2

Graph

All that’s left is to specify the estimator for the variance, σ̂2
α

This is the most complicated part, so the explanation will be skipped.
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The Diebold-Mariano (DM) test: HAC

DM suggest what is commonly referred to as a heteroskedasticity and
autocorrelation (HAC) variance estimator.

This simplist form of this estimator is known as the truncated
estimator & given by

Tv̂ar(d̄) =
M

∑
r=−M

γ̂d̄ (r) = γ̂d̄ (0) + 2
M

∑
h=1

γ̂d̄ (h)

M = T 1/3
2

γ̂d̄ (r) = sample covariance(dt , dt+r )

v̂ar(d̄) =
1

T
[γ̂d̄ (0) + 2

M

∑
r=1

γ̂d̄ (r)]

z =
d̄√

1
T [γ̂d̄ (0) + 2 ∑M

r=1 γ̂d̄ (r)]
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Forecasting encompassing tests

Want to forecast at time t
Have two forecasts from two models:
ŷm1

t+h|t from model 1

ŷm2

t+h|t from model 2

Have generated a sample of out-of-sample forecasts as explained in
previous lecture.
Now consider running a regression of your observed data (yt+h) on
both forecasts

yt+h = β0 + β1ŷ
m1

t+h|t + β2ŷ
m2

t+h|t + ut+h (6)

Now, consider the hypothesis

H0 : β2 = 0 (7)

HA : β2 6= 0 (8)

If β2 = 0 then ŷm2

t+h|t has no additional predictive power for yt+h after

controlling for ŷm1

t+h|t
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Forecasting encompassing tests cont.

I.e. β2 = 0 tells us that the second forecast adds no value relative to
the first

Technically speaking, we would say that the information content in
the first forecast encompassing the information content in the second
forecast.
Intuitively Graph

Under HA : β2 6= 0 the second forecast can be used to improve the
first forecast.

That doesn’t necessarily mean that the 2nd forecast is better than the
first, just that it has something to add to or improve upon the first
forecast.
Intuitively, Graph

Of course we can also test the hypothesis:

H0 : β1 = 0

HA : β1 6= 0

}
(9)
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Model averaging

If the null hypothesis in both encompassing tests, (7) & (9), are
rejected that implies that both forecasts have something to contribute
above & beyond what’s already in the other forecast.

So why not use both?

In particular, with β1 6= 0 & β2 6= 0, (6) suggests that the linear
combination of forecasts given by:

ŷt+h|t = β0 + β1ŷ
m1

t+h|t + β2ŷ
m2

t+h|t (10)

should out-of-perform either individual forecast.

(10) is an example of model averaging, in which we combine (kind of
average) two or more forecasts, to make a new & hopefully more
reliable forecast.

In practice, we don’t know β0, β1, β2 so we must instead estimate
the regression in (10) & use:

ŷt+h|t = β̂0 + β̂1ŷ
m1

t+h|t + β̂2ŷ
m2

t+h|t (11)
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Model averaging cont.

In practice, we estimate β̂0, β̂1, β̂2 using the ”psuedo” out-of-sample
forecasts. We create following previous lecture notes & then use the
coefficients to construct our real out-of-sample forecasts.

Estimate the βs with error does add some noise to the forecast

A simpler form of model averaging which doesn’t add noise but also
doesn’t pick it weights optimally is:

ŷt+h|t =
1

2
ŷm1

t+h |t +
1

2
ŷm2

t+h|t (12)

This is quite literally a model average and if explains why the
terminology model averaging is employed
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Model averaging cont.

Note that both the encompassing tests & model averaging techniques
all extend naturally to 3 or more forecasts

Finally, note that for h > 1, µt in (6) is likely serially correlated &
robust (i.e. HAC) standard errors should be employed for the
encompassing tests

E [ε2
t ] = α0 + α1E [ε

2
t−1]

= α0 + α12E [ε2
t ]

=⇒ (1− α1L)E [ε
2
t ] = α0

=⇒ E [ε2
t ] =

1

1− α1L
α0

=
α0

1− α1L
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Tests for Forecast Data Mining

Comparing multiple forecasts to a benchmark

Data mining

The basic multiple test problem

How to pick the appropriate critical value?

Procedures to select
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Comparing multiple forecasts to a benchmark

References for the further reading include:
1 White, H. (2000). A reality check for data snooping. Econometrica,

68(5), 1097-1126.
2 Romano, J. P., amp; Wolf, M. (2005). Stepwise multiple testing as

Formalized data snooping. Econometrica, 73(4), 1237-1282.
3 Hansen, P. R. (2005). A test for superior predictive ability. Journal of

Business amp; Economic Statistics, 23(4), 365-380.
4 Hsu, P., Hsu, Y., amp; Kuan, C. (2010). Testing the predictive ability

of technical analysis using a new stepwise test without data snooping
bias. Journal of Empirical Finance, 17(3), 471-484.
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Why compare multiple forecasts to baseline forecast?
Example

Example for which you might want to do this

Look ar the performance across many fund managers to see if any (and
who) beats the market return.

Examine the forecasts from a group of professional forecasters to see if
any (and how many) produce exchange rate forecasts that beat the
random walk.

Research team developed several forecasting models and wants to see
which, and if any beats a random walk or AR(1) benchmark.
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Why compare multiple forecasts to baseline forecast?
Accounting for data snooping

Accounting for data-snooping/ data-mining

Data snooping bias occurs when many models or forecasts are
considered, but only the best are presented or published.
It can occur because a researcher only presents her best model.
It can occur hen many researchers examine the same data, but only the
researchers with the most successful models get published (refer to as
publication bias).
While abuses can be avoided some level of data mining is unavoidable
part of research.
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Data mining Cont.

Data mining issues are also relevant in practice

A bank may hire many fund mangers but only advertise those that beat
the market.
Newsletter scam (external & illegal example)

Each week 2 newsletters printed
One predicts market goes up next week
Other predicts market goes down next week
Sent to half of households
Following week, newsletters only sent to households that received
correct prediction last week
Again, half get letters predicting that market falls
Week 3 - send only to households that received correct predictions in
week 1 and 2.
It get repeated
...
Pretty soon, there are a group of readers who think they have a
newsletter that makes perfect predictions - they buy a subscription,
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Framework

e0
t+1 - baseline model forecast error

emt+1 for m = 1, ...,M forecast error from other models

L0
t+1 ≡ L(e0

t+1) - Loss from baseline forecast error

Lmt+1 ≡ L(emt+1) - Loss from model m

dm
t+1 = L0

t+1 − Lmt+1 - Loss from baseline froecast minus loss from
model m.

Model m produced a better forecast than ”baseline” if dm
t+1 > 0 (m

beat baseline at t + 1).

Model m produced better forecast on average if d̄m > 0 (m beat
baseline on average)
(Here d̄m is average overforecast sample)

Model m provides a better forecast than the baseline model if
µm
d ≡ E [dm

t+1] > 0.
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The basic multiple test problem

Ask the question: do any of our forecasts beat the baseline models?

H0 : µm
d ≤ 0 all m (no model beats baseline)

HA : µm
d > 0 for at least one m (Not H0)

If M (number of forecast models small) we can conduct this joint test
−→ In which case there is no problem?

But when M is large, this joint test is infeasible because:

d̄ =

 d̄1

...
d̄M


has M ×M variance matrix, say V

M×M
and joint test based on the

wald statistics W ≡ d̄ ′ V̂−1

M×M
d , which involves estimating and inverting

the M ×M variance-covariance matrix V .

Chaoyi Chen (BCE & MNB) Testing the accuracy of the out-of-sample forecast 36 / 42



The basic multiple test problem Cont.

So realistically, we are forced to conduct multiple tests:

H1
0 : µ1

d ≤ 0 H1
A : µ1

d > 0 Reject if t1 =
d̄1

se(d̄1)
> Zα

H2
0 : µ2

d ≤ 0 H2
A : µ2

d > 0 Reject if t1 =
d̄2

se(d̄2)
> Zα

...

HM
0 : µM

d ≤ 0 HM
A : µM

d > 0 Reject if t1 =
d̄M

se(d̄M)
> Zα

However, if significance level α = 0.05 then we have designed the test
so that about 5% of the tests reject by accident (Type I error) even if
all the null hypothesis (Note: Since the tests statistics for the
m = 1, ..,M are potentially corrected, the tests could reject by
accident more or less than 5% but we use 5% example to keep
discussion concrete).
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The basic multiple test problem: A realistic solution

For example, because there are so many funds, we are almost sure to
find that some funds beat the market purely by accident.

Similarly, data snooping bias refers to the fact if enough researchers
try out enough models and enough variables some will show up
significant purely by accident. And, these significant variables are the
ones that will draw attention & lead to publication.

The reality check solution in general terms

Instead of using M t-statistics, we focus on the largest t statistic
Reject if tmax = Max

m=1,...,M
tm > Appropriate Critical Value

Note that the model with largest t value shows most evidence against
H0.

So if it isn’t large enough to reject, then none of the t statistics.
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How to pick the appropriate critical value?

How to pick the appropriate critical value?

d̄ =


d̄1

d̄2

...
d̄M

 ∼ N
(

µd
M×1

, V
M×M

)

Impose the equality pact of the null hypothesis. Ho : µ′d = 0
d̄ ∼ N(0,V ). Then, by standardizing, we have

t =

 d̄1/se1

d̄2/se2

...
d̄M/seM

 =

 d̄1/
√
V11

d̄2/
√
V22

...
d̄M/
√
VMM

 =


1√
V11

0 ... 0

0 1√
V22

... 0

...0 0 ... 1√
VMM


 d̄1

d̄2

...
d̄M

 .
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How to pick the appropriate critical value? Cont.

Call


1√
V11

0 ... 0

0 1√
V22

... 0

...0 0 ... 1√
VMM

 ≡ [diag(v)]−1/2.

t = diag(V )−1d̄ ∼
H0

diag(V )−1/2N(0,V ) ∼ N(0, diag(V )−1/2Vdiag(V )−1/2)

Note that diag(V )−1/2Vdiag(V )−1/2 will have ones along diagonal, but it does
not necessarily have zeros off diagonal −→ not identity matrix.

Therefore,

tmax = Max
m−1,...,M

t ∼
H0

Zmax (V ) = max N(0, diag(V )−1/2Vdiag(V )−1/2).

The distribution of the maximum of variables drawn from the multivariate normal
distribution.

Pick critical value (say Zmax ,α) such that P(tmax > Zmax ,α) = α Graph
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Additional problems in finding Zmax ,α

Zmax (V ) is Not a normal distribution

It is the maximum value of a draw from a normal distributions and the
max of a normal RV is NOT a normal RV-cannot use Z lookup table.
Zmax (V ) depends on V and will be different in each application −→
Impossible to provide alternative lookup table.

Critical value is obtained by bootstrap resampling, which is itself a
complicated procedure.

Given enough time Ph.D. student could implement one of the four
versions of the reality type test if needed for thesis chapter.

Possibly, this could be done over summer for MA paper.

For purposes of class project only feasible implementation would be
using code available online or in software packages.
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Procedures to select from

White (2000) Reality Check Test
1 original test
2 tests if best model beats benchmark

Hansen (2005) Superior Predictive Test (SPA test)
1 improves power of white test
2 test if best model beats forecast

Romano & Wolf (2005) Stepwise Reality Test
1 repeated reality check type tests to test for all models that beat the

benchmark (not just the best)
2 also some power improvements

Hsu, Hsu & Kuan (2010) Stepwise Superior Predictive Test
1 combine power improvements of Hansen with stepwise approach of

Romano Wolf.
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