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This online supplement is composed of eight parts. Section A contains the proof of

Theorem 1-time series, including the consistency and the convergence rate. Section B gives

the proof of Theorem 2-time series. Section C contains the proof of Theorem 1-panel.

Section D shows the proof of the Theorem 2-panel. Section E shows the proof of Lemmas.

Section F gives the omitted expression of the variance-covariance matrix in the main text.

Section G proposes a Wald test to test the endogeneity. Section H reports the MC results

of changing the order of polynomials (for time-series, ϑ2n, ϑ2n, for the panel data model,

ϑ1N , ϑ2N) in our basis functions; Section I contains the summary statistics of our dataset.

A Proof of Theorem 1-time series

A.1 Consistency

To establish the consistency of our proposed estimator, we apply the results from Theorem

3.1 in Chen (2007), which provides a general consistency result for sieve extreme estimators.

In doing so, we must verify Conditions 3.1-3.5 as outlined in Theorem 3.1 of Chen (2007).

Notably, Condition 3.1 aligns with our Assumption T3.2(b), which presupposes ϕ0 as the

unique minimizer of our objective function. Condition 3.2 corresponds to our Assumption

T2.3, which posits the existence of an appropriate sieve approximation for our unknown
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functions, denoted as h0(·). Condition 3.3 is satisfied due to the continuity property of the

KTR model. Condition 3.4 is met through the assumption of the compactness of the sieve

space, in accordance with our Assumption T3.2(a). In summary, to apply Theorem 3.1 from

Chen (2007), our task is to demonstrate Condition 3.5, namely, the uniform convergence

of the objective function over the sieve space. We will elucidate this in the following steps.

Denote Ŝn(ϕ
∗) = 1/n

∑n
t=1 ε̂t(ϕ

∗)2, where ε̂t(ϕ
∗) equals ε̂t(ϕ̂n) defined in Remark under

Theorem 2-time series by replacing ϕ̂n with ϕ∗; Sn(ϕ
∗) = 1/n

∑n
t=1 εt(ϕ

∗)2, where εt(ϕ
∗)

equals ε̂t(ϕ
∗) by replacing v̂t with vt.

For a kink model with a continuous objective function, we only need to show the uniform

convergence of Ŝn(ϕ
∗) to E[Sn(ϕ

∗)] for ϕ∗ ∈ Φn as n → ∞, which equivalent to Condition

3.5 of Chen (2007). In other words, we need to prove:

plimn→∞ sup
ϕ∗∈Φn

|Ŝn(ϕ
∗)− E[Sn(ϕ

∗)]| = 0. (A.1)

To show that, by the Triangular inequality, we have

sup
ϕ∗∈Φn

|Ŝn(ϕ
∗)− E[Sn(ϕ

∗)]| ≤ sup
ϕ∗∈Φn

|Ŝn(ϕ
∗)− Sn(ϕ

∗)|+ sup
ϕ∗∈Φn

|Sn(ϕ
∗)− E[Sn(ϕ

∗)]|

= S1 + S2. (A.2)

(S1:) We first show S1 is op(1). We have the expression

sup
ϕ∗∈Φn

[
Ŝn(ϕ

∗)− Sn(ϕ
∗)
]

= sup
ϕ∗∈Φn

1

n

n∑
t=1

[ε̂t(ϕ
∗)2 − εt(ϕ

∗)2]

= sup
ϕ∗∈Φn

1

n

n∑
t=1

[ε̂t(ϕ
∗)− εt(ϕ

∗)]2 + sup
ϕ∗∈Φn

2

n

n∑
t=1

εt(ϕ
∗)[ε̂t(ϕ

∗)− εt(ϕ
∗)]

= sup
βh∈Bh

1

n

n∑
t=1

{[Ψϑ2n(vt)−Ψϑ2n(v̂t)]
′βh}2

+ sup
ϕ∗∈Φn

2

n

n∑
t=1

εt(ϕ
∗)[Ψϑ2n(vt)−Ψϑ2n(v̂t)]

′βh

= A1 + 2A2. (A.3)

Next, we prove the convergence of A1 and A2. By simple calculation, under Lemma 3,
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T2.2, and T3.2(a), applying the Cauchy-Schwarz inequality and Taylor expansion, we have

|A1| = sup
βh∈Bh

1

n

n∑
t=1

{[Ψϑ2n(vt)−Ψϑ2n(v̂t)]
′βh}2

≤ sup
βh∈Bh

1

n

n∑
t=1

∥[Ψϑ2n(vt)−Ψϑ2n(v̂t)]∥
2 ∥βh∥2

= sup
βh∈Bh

1

n

n∑
t=1

∥∇Ψϑ2n(v̄t)(vt − v̂t)∥2 ∥βh∥2

≤ sup
βh∈Bh

1

n

n∑
t=1

∥∇Ψϑ2n(v̄t)∥
2 ∥vt − v̂t∥2 ∥βh∥2

= Op

[
∥Ψϑ2n∥

2
1 (ϑ

−2η
1n + ϑ1n/n)ϑ2n

]
, (A.4)

where denote v̄t as a specific vector which lies in between vt and v̂t, ∇Ψϑ2n(v̄t) is the partial

derivative with respect to v̄t, which is a [ϑ2n(1+ d1)]× (1+ d1) matrix. Under Assumption

T4, |A1| = op(1).

Next, we show A2. To show A2 is bounded, first we show supϕ∗∈Φn
1/n

∑n
t=1 εt(ϕ

∗)2 is

bounded. Note that by simple calculation, we have

sup
ϕ∗∈Φn

1

n

n∑
t=1

εt(ϕ
∗)2 = sup

ϕ∗∈Φn

1

n

n∑
t=1

[εt(ϕ
∗)− εt(ϕ

∗
0) + εt(ϕ

∗
0)− εt + εt]

2

≤ sup
ϕ∗∈Φn

2

n

n∑
t=1

[εt(ϕ
∗)− εt(ϕ

∗
0)]

2 +
2

n

n∑
t=1

[εt(ϕ
∗
0)− εt(ϕ0)]

2 +
2

n

n∑
t=1

ε2t

= Op(1) +Op(ϑ
−2η
2n ) +Op(1) = Op(1), (A.5)

where the boundness of the first term is given by

sup
ϕ∗∈Φn

1

n

n∑
t=1

[εt(ϕ
∗)− εt(ϕ

∗
0)]

2

≤ sup
ϕ∗∈Φn

2

n

n∑
t=1

x2
t [(β10 − β1)

2 + (δ0 − δ)2] + 2 sup
ϕ∗∈Φn

[β10γ0 − β1γ]
2 + 2 sup

ϕ∗∈Φn

[δ0γ0 − δγ]2

+ sup
ϕ∗∈Φn

2

n

n∑
t=1

(β30 − β3)
′ztz

′
t(β30 − β3) + sup

ϕ∗∈Φn

2

n

n∑
t=1

[h∗
0(vt)−Ψϑ2n(vt)

′βh]
2

= Op(1), (A.6)
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which holds under Assumption T1.1(b), T2.3(b) and T3.2(a). The second term is given

by |εt(ϕ∗
0) − εt(ϕ0)|2 ≤ supv∈R1+d1 |h0(vt) − Ψϑ2n(vt)

′βh0|2 = Op(ϑ
−2η
2n ), under Assumption

T2.3(b). The last term uses the fact that our true error term is bounded under Assumptions

T1.1(b) and T2.3(b).

Following results in (A.4) and (A.5), and applying the Hölder inequality gives

|A2| ≤

(
sup

ϕ∗∈Φn

1

n

n∑
t=1

|εt(ϕ∗)|2
)1/2(

sup
ϕ∗∈Φn

1

n

n∑
t=1

|[Ψϑ2n(vt)−Ψϑ2n(v̂t)]
′βh|2

)1/2

= Op(1)
{
Op

[
∥∇Ψϑ2n∥1 (ϑ

−η
1n +

√
ϑ1n/n)

√
ϑ2n

]}
= op(1). (A.7)

To sum up, we have S1 = supϕ∗∈Φn
|Ŝn(ϕ

∗)− Sn(ϕ
∗)| = op(1), as n → ∞.

(S2:) To show the uniform convergence of S2, we check the conditions of Corollary 2.2 in

Newey (1991). The Corollary needs three conditions: (1) the compactness of the parameter

space; (2) the point-wise convergence of the objective function Sn(ϕ
∗)(i.e., for any ϕ∗ ∈ Φn,

limn→∞ |Sn(ϕ
∗) − E[Sn(ϕ

∗)]| = 0); (3) the stochastic equicontinuity of Sn(ϕ
∗). Note the

compactness of the parameter space is given by our Assumption T3.2. Next, we show the

latter two conditions hold in our case.

First, we demonstrate the point-wise convergence for Sn(ϕ
∗), which we establish using

the Weak Law of Large Numbers (WLLN) for a β-mixing sequence as in Hansen (2019).

It’s worth noting that Hansen’s WLLN only necessitates that our E[εt(ϕ
∗)2] is uniformly

bounded over ϕ∗ ∈ Φn, a condition satisfied under Assumptions T1.1 and T2.3(b). Hav-

ing established the point-wise convergence result, our next objective is to demonstrate

stochastic equicontinuity. To achieve this, we apply Condition 3A from Newey (1991), a

Lipschitz continuity condition that provides a sufficient criterion for stochastic equiconti-

nuity. 1. Next, we show Condition 3A holds in our case. We will now proceed to show that

Condition 3A holds in our specific case.

1For similar assumption, see A4 of Andrews (1994).
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Without loss of generality, we denote ϕ̇∗ = (β̇, γ̇, ḣ∗) ∈ Φn and ϕ̈∗ = (β̈, γ̈, ḧ∗) ∈ Φn,

with γ̇ ≤ γ̈ and d(ϕ̇∗, ϕ̈∗) ≤ 1, where d(·, ·) is a measure of distance, defined in Theorem

1-time series. By simple calculation, under the assumption of a compact parameter space

(Assumption T3.2(a)), we need to show

|Sn(ϕ̇
∗)− Sn(ϕ̈

∗)]| ≤ BnK
(
d(ϕ̇∗, ϕ̈∗)

)
, (A.8)

where Bn needs to be bounded, K(·) denotes a function withK : [0,∞) → [0,∞), K(0) = 0

and it is continuous at 0. Without loss of generality, we assume Sn(ϕ
∗∗) ≤ Sn(ϕ

∗). To show

(A.8), we need to rely on the absolute value inequality. The inequality indicates for any

real number a, b, c, d, we have |a − b| − |c − d| ≤ |a − b − c + d| ≤ |a − c| + |b − d|. Thus,

applying that inequality and using the point-wise convergence result of Sn(ϕ
∗), we have

|Sn(ϕ̇
∗)− Sn(ϕ̈

∗)]|

=
{
|Sn(ϕ̇

∗)− Sn(ϕ̈
∗)]| − E|Sn(ϕ̇

∗)− Sn(ϕ̈
∗)]|
}
+ E|Sn(ϕ̇

∗)− Sn(ϕ̈
∗)]|

≤ |Sn(ϕ̇
∗)− E[Sn(ϕ̇

∗)]|+ |Sn(ϕ̈
∗)− E[Sn(ϕ̈

∗)]|+ E|Sn(ϕ̇
∗)− Sn(ϕ̈

∗)]|

= op(1) + E|Sn(ϕ̇
∗)− Sn(ϕ̈

∗)]|. (A.9)

Now, combining (A.8) with (A.9), we only need to show E|Sn(ϕ̇
∗)−Sn(ϕ̈

∗)| is bounded,

by simple calculation, we have

E|Sn(ϕ̇
∗)− Sn(ϕ̈

∗)]| ≤ E{[εt(ϕ̇∗)− εt(ϕ̈
∗)]2}︸ ︷︷ ︸

Dv1

+2E|εt(ϕ̇∗)[εt(ϕ̇
∗)− εt(ϕ̈

∗)]|︸ ︷︷ ︸
Dv2

(A.10)

≤ constant× E ∥wt∥ × d(ϕ̇∗, ϕ̈∗), (A.11)

where wt is a vector whose elements contain any pairwise inner products of (yt, 1, xt, zt, h0(vt)).
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To be more precisely, for Dv1, we have

Dv1 = E
{
[εt(ϕ̇

∗)− εt(ϕ̈
∗)]2
}

≤ 2E[(xt − γ̈)β̈ − (xt − γ̇)β̇]2︸ ︷︷ ︸
Dx

+2E[δ̈(xt − γ̈)I(xt ≥ γ̈)− δ̇(xt − γ̇)I(xt ≥ γ̇)]2︸ ︷︷ ︸
Dγ

+2E ∥zt∥2
∥∥∥β̈3 − β̇3

∥∥∥2 + 2E
{
[ḧ∗(vt)− ḣ∗(vt)]

2
}

≤ constant× E ∥wt∥ × d(ϕ̇∗, ϕ̈∗)2, (A.12)

where we only need to showDx andDγ. ForDx, with a compact parameter space(Assumption

T3.2(a)), we have

Dx ≤ 2E|xt|2(β̈ − β̇)2 + 2(β̇(γ̇ − γ̈))2 + 2(β̇ − β̈)2γ̈2

≤ constant× E ∥wt∥ × d(ϕ̇∗, ϕ̈∗)2. (A.13)

For Dγ, under Assumptions T3.2(a) and T3.4, we have

Dγ ≤ 2δ̈2E
{
[(xt − γ̈)I(xt ≥ γ̈)− (xt − γ̇)I(xt ≥ γ̈)]2

}
+ 2(δ̈ − δ̇)2E

[
(xt − γ̈)2I(xt ≥ γ̈)

]
≤ 4δ̇2E[(xt − γ̇)2I(γ̇ ≤ xt ≤ γ̈)] + 4δ̇2(γ̈ − γ̇)2E[I(xt ≥ γ̈)] + constant1 × d(ϕ̇∗, ϕ̈∗)2

≤ constant2 ×max{f̄ , E ∥wt∥} × d(ϕ̇∗, ϕ̈∗)2 ≤ constant3 × E ∥wt∥ × d(ϕ̇∗, ϕ̈∗)2.(A.14)

For Dv2, we use a similar method as used to prove Dv1. Then, we have

Dv2 = E|εt(ϕ̇∗)[εt(ϕ̇
∗)− εt(ϕ̈

∗)]|

≤ constant× E ∥wt∥ × d(ϕ̇∗, ϕ̈∗). (A.15)

Combining (A.12) and (A.15) gives (A.11). Under Assumptions T1.1 and T2.2, we have

E ∥wt∥ = O(1) by applying the Hölder inequality 2 3. We then combine these findings

with (A.9) and (A.11) to conclude our proof for (A.8), with K
(
d(ϕ̇∗, ϕ̈∗)

)
= d(ϕ̇∗, ϕ̈∗). In

2note here we only require the moment condition up to order 2.
3Note the soundness of ∥wt∥ and h0(vt) also imply the requirement of E[ε2t ] to be equicontinuous in

Corollary 2.2 Newey (1991) is automatically satisfied.
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summary, we demonstrate that Condition 3A, as presented in Newey (1991), holds within

our model. This establishes all necessary conditions for Corollary 2.2 from the same source,

ultimately leading to the conclusion that S2 converges to zero in probability, denoted as

S2 = op(1).

Given that both S1 and S2 are of order op(1), we establish the uniform convergence

results presented in equation (A.1). This uniform convergence implies that as the sample

size n approaches infinity, the distance d(ϕ̂n, ϕ0) converges to zero in probability, which can

be inferred from the results outlined in Theorem 3.1 of Chen (2007).

A.2 Convergence rate

To establish the convergence rate of our proposed estimator, we apply Theorem 3.2 in

Chen (2007), which permits the time series data to be β-mixing. In doing so, under our

β-mixing sequence assumption (Assumption T1.1(a)), it suffices to verify Condition 3.7

and Condition 3.8 in Theorem 3.2 in her work.

Firstly, we check Condition 3.7 of Chen (2007). In our case, it is equivalent to verify

sup
ϕ∗∗∈Φn,d(ϕ∗∗,ϕ0)≤ω

V ar
(
ε2t (ϕ

∗∗)− ε2t
)
≤ constant× ω2 (A.16)

for any small 0 < ω < 1. By definition and ε2t (ϕ
∗∗)− ε2t = 2εt[εt(ϕ

∗∗)− εt] + [εt(ϕ
∗∗)− εt]

2,

we have

V ar(ε2t (ϕ
∗∗)− ε2t ) ≤ E

{
[ε2t (ϕ

∗∗)− ε2t ]
2
}

≤ 8E
{
ε2t [εt(ϕ

∗∗)− εt]
2
}
+ 2E

{
[εt(ϕ

∗∗)− εt]
4
}

≤ constant× E
{
[εt(ϕ

∗∗)− εt]
2
}
+ 2E

{
[εt(ϕ

∗∗)− εt]
4
}
,

= constant1 × ω2 + constant2 × ω4, (A.17)

since E[ε2t (εt(ϕ
∗∗)−εt)

2] = E [E [ε2t |Ft−1, xt, z1t] (εt(ϕ
∗∗)− εt)

2] ≤ constant×E [(εt(ϕ
∗∗)− εt)

2]
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under Assumptions T1.1.(b)(c) and T2.3 (b), and

|εt(ϕ∗∗)− εt]| ≤ |xt(β0 − β∗∗) + (xt − γ0)δ0 − (xt − γ∗∗)δ∗∗ + z′t(β30 − β∗∗
3 )|

+|h0(vt)− h∗∗(vt)|

depends on the distance between ϕ∗∗ and ϕ0.

Secondly, we check Condition 3.8 of Chen (2007), which is equivalently to show

sup
ϕ∗∗∈Φn,d(ϕ∗∗,ϕ0)≤δ

|ε2t (ϕ∗∗)− ε2t | ≤ constant× δs ∥wt∥ , (A.18)

for any small 0 < δ < 1 and some s ∈ (0, 2). Using the results above we have

|εt(ϕ∗∗)2 − ε2t | = [εt(ϕ
∗∗)− εt]

2 + 2|εt[εt(ϕ∗∗)− εt]|

≤ constant1 × δ2 × ∥wt∥+ constant2 × δ × ∥wt∥

≤ constant× δ × ∥wt∥ ,

which verifies (A.18) with s = 1.

Now, we are in a position to obtain the convergence rate, which equalsOp(max
{
δn, ϑ

−η
2n

}
)

in our case following Theorem 3.2 of Chen (2007). Next, we solve δn. Specifically, by the

definition of Condition A.3 of Chen and Shen (1998), δn solves the optimizing inequality

of the metric entropy with bracket, where

δn = sup

{
δ > 0 : δ−2

∫ δ

bδ2

√
H[ ](ω1, Gn, ∥·∥)dω1

}
,

whereH[ ](ω1, Gn, ∥·∥) denotes the metric entropy with bracketing andGn = {εt(ϕ∗∗∗)2−ε2t :

d(ϕ∗∗∗, ϕ0) ≤ ω1, ϕ
∗∗∗ ∈ Φn}, for any given number w1 > 0.

Let Cu =
√
E ∥wt∥, for all 0 < ω1/Cu ≤ δ < 1, we haveH[ ](ω1, Gn, ∥·∥) ≤ logN(ω1/Cu, B×

Γ, ∥·∥2) + logN(ω1/Cu,Hn, ∥·∥∞). Note the first part is the L2 metric entropy of the para-

metric part which equals |log(ω1/Cu)| following Hansen (2017). For the second part, by

Lemma 2.5 in Geer (2000), we have the inequality, logN(ω1/Cu,Hn, ∥·∥∞) ≤ constant ×
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(1 + d1)ϑ2n × log(1 + 4/ω1). Note the first part is bounded by the second part for any

ω1/Cu > 0 and some sufficiently large ϑ2n.

Next, following the proof of Proposition 3.3 in Chen (2007) and solving

1√
nδ2n

∫ δn

bδ2n

√
H[ ](ω1, Gn, ∥·∥)dω1

≤ 1√
nδ2n

∫ δn

bδ2n

√
logN(ω1/Cu, B × Γ, ∥·∥2) + logN(ω1/Cu,Hn, ∥·∥∞)dω1

≤ 1√
nδ2n

∫ δn

bδ2n

√
|log(ω1/Cu)|+ constant× (1 + d1)ϑ2n × log(1 + 4/ω1)dω1

≤ constant1 +
1√
nδ2n

∫ δn

bδ2n

√
constant× (1 + d1)ϑ2n × log(1 + 4/ω1)dω1

≤ constant2 + constant3 ×
1√
nδ2n

√
ϑ2n × δn ≤ constant4, (A.19)

gives δn ≍
√

ϑ2n/n, where ≍ indicates “asymptotic equivalent”. Following Theorem 3.2

of Chen (2007), we obtain the convergence rate of our proposed estimator, which equals

max
{√

ϑ2n/n, ϑ
−η
2n

}
.

B Proof of Theorem 2-time series

In this section, we establish the asymptotic normality of our sieve estimator by verifying

the conditions (2.1)-(2.6) as outlined in Theorem 2 of Chen et al. (2003), building upon the

consistency results of our proposed estimator4. Given the proofs above and under Assump-

tions T1.1(b) and T2.4(c), it is readily seen that Conditions (2.1)-(2.3) hold. Condition

(2.4) is not explicitly required here as in our case h enters mt linearly
5. Below, we only

need to check Conditions (2.5) and (2.6) in details.

First, we check Condition (2.5)′ in Chen et al. (2003) since Chen et al. (2003) in Remark

(ii) states that Condition (2.5)′ is a sufficient condition for Condition (2.5). That is, we

4Note although the paper Chen et al. (2003) focus on an i.i.d. sequence, her Theorem 2 also works with

β-mixing data
5Chen et al. (2003) Remark 2(iii)
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need to check the following stochastic equicontinuity condition:

sup
ϕ,ϕ̃∈Φ,d(ϕ,ϕ̃)≤δ̃

∥∥∥∥∥1/n
n∑

t=1

mt(θ, h)− E[mt(θ, h)]− 1/n
n∑

t=1

mt(θ0, h0)

∥∥∥∥∥ = op(n
−1/2), (B.1)

with 0 < δ̃ < 1. To show that, we apply the results of Lemma 4.2 in Chen (2007), which

gives a sufficient condition of establishing Condition (2.5)′ of Chen et al. (2003) for a β-

mixing sequence6. Next, we apply the results of Lemma 4.2 of Chen (2007) by establishing

Conditions (4.2.1)-(4.2.3) in that paper.

Specifically, we show Condition (4.2.1) of Theorem 4.2 in Chen (2007), which in our

case requires 1/n
∑n

t=1 mt(θ, h) to be locally uniformly L2 continuous with respect to (θ, h).

To prove Condition (4.2.1) of Chen (2007), it is suffice to show E
∥∥∥mt(θ, h)−mt(θ̃, h̃)

∥∥∥2 ≤
constant×δ̃2. In our case, under Assumptions T1.1(b)(finite moment conditions), T2.3(b)(unknown

functions are squared integrable) and T3.2(a)(compact parameter space), we use C-R in-

equality and obtain

E
∥∥∥mt(θ, h)−mt(θ̃, h̃)

∥∥∥2
= E

∥∥∥[mt(θ, h)−mt(θ, h̃)] + [mt(θ, h̃)−mt(θ̃, h̃)]
∥∥∥2

≤ 2E
∥∥∥Ht(θ)[εt(θ, h)− εt(θ̃, h̃)]

∥∥∥2 + 2E
∥∥∥[Ht(θ)−Ht(θ̃)]εt(θ, h̃) +Ht(θ̃)[εt(θ, h̃)− εt(θ̃, h̃)]

∥∥∥2
≤ constant1 × E

{∥∥∥Ht(θ)(h̃− h)
∥∥∥2 + E

∥∥∥w1,t(θ − θ̃)
∥∥∥2}

+constant2 × E

{∥∥∥w1,t × h̃× (θ − θ̃)
∥∥∥2 + E

∥∥∥w1,t(θ − θ̃)
∥∥∥2}

≤ constant3 × E ∥w1,t∥2 × δ̃2, (B.2)

where w1,t equals wt by removing h0(vt) in wt with wt being defined in (A.11), and the

last step holds by simply applying the Hölder inequality. Note E ∥w1,t∥2 is bounded under

Assumption T1.1(b), as it requires a moment condition up to order 4. Thus, (B.2) can

be written as constant × δ̃2, and (B.1) holds which implies Condition (4.2.1) of Lemma

4.2 Chen (2007). Note their Condition (4.2.2) holds as h belongs to a subset of Hölder

6also see Theorem 3 of Chen et al. (2003) for a similar analysis for an i.i.d sequence.
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functional space with η > (1+d1)/2, and Condition (4.2.3) is our Assumption T1.1. Thus,

we verify Conditions (4.2.1)-(4.2.3) of Lemma 4.2 in Chen (2007).

Second, we prove Condition(2.6) of Chen et al. (2003) by applying the CLT for a β-

mixing sequence. To show that, it is sufficient to apply the result of Lemma 5.1 in Newey

(1994), which gives the asymptotic normality of 1/
√
n
∑n

t=1 mt(θ0, ĥ). As in our case h(·)

enters Emt(θ, h) linearly, the proof can be greatly simplified. Under the linearization

property, his Conditions (5.1) and (5.3) are satisfied in our case, and we only need to

establish his Condition (5.2), which in our case only requires Ht(θ0)[ĥ(vt) − h0(vt)] to be

stochastic equicontinuity, we need to show

1√
n

n∑
t=1

{
Ht(θ0)[ĥ(vt)− h0(vt)]− E

{
Ht(θ0)[ĥ(vt)− h0(vt)]

}}
p−→ 0. (B.3)

Given Ht(θ0) to be bounded under Assumption T1.1(b), (B.3) is satisfied by applying the

stochastic equicontinuity result in (B.1). Now, we show that all the conditions of Lemma

5.1 in Newey and Mcfadden (1994) hold in our case.

C Proof of Theorem 1-panel

C.1 Consistency

Similar to the proof of Theorem 1-time Series, to establish the consistency of our proposed

estimate, we apply the results from Theorem 3.1 in Chen (2007).

To apply Chen’s results, we check the Conditions 3.1- 3.5 listed in Theorem 3.1 of her

paper. Notably, Condition 3.1 aligns with our Assumption P3.2(b), which presupposes

ϕ0 as the unique minimizer of our objective function. Condition 3.2 corresponds to our

Assumption P2.3, which posits the existence of an appropriate sieve approximation for

our unknown functions, denoted as h0(·). Condition 3.3 is satisfied due to the continuity

property of the KTR model. Condition 3.4 is met through the assumption of the com-
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pactness of the sieve space, in accordance with our Assumption P3.2(a). In summary, to

apply Theorem 3.1 from Chen (2007), our task is to demonstrate Condition 3.5, namely,

the uniform convergence of the objective function over the sieve space, which is the same

as in a time series KTR model. We will elucidate this in the following steps.

Denote ϕ∗ = (θ, h∗) = (β, γ, h∗), where ϕ∗ ∈ ΦN , ŜN(ϕ
∗) = 1/N

∑N
i=1

∑T
t=t0

∆ε̂i,t(ϕ
∗)2,

where ∆ε̂i,t(ϕ
∗) equals ∆ε̂i,t(ϕ̂

∗
N) defined in Remark under Theorem 2-panel by replacing ϕ̂∗

N

with ϕ∗; SN(ϕ
∗) = 1/N

∑N
i=1

∑T
t=t0

∆εi,t(ϕ
∗)2, where ∆εi,t(ϕ

∗) equals ∆ε̂i,t(ϕ
∗) by replacing

v̂t by vt. To establish Condition 3.5 of Chen (2007), we need to show

plimN→∞ sup
ϕ∗∈Φn

|ŜN(ϕ
∗)− E[SN(ϕ

∗)]| = 0, . (C.1)

Firstly, by simple calculation, we decompose (C.1) and get

sup
ϕ∗∈Φn

|ŜN(ϕ
∗)− E[S∗

N(ϕ
∗)]| ≤ sup

ϕ∗∈Φn

|ŜN(ϕ
∗)− S∗

N(ϕ
∗)|+ sup

ϕ∗∈Φn

|S∗
N(ϕ

∗)− E[S∗
N(ϕ

∗)]|

= P1 + P2. (C.2)

Next, we prove P1 and P2 to be op(1), respectively.

(P1:) for all ϕ∗ ∈ Φn, we have

sup
ϕ∗∈Φn

∣∣∣ŜN(ϕ
∗)− SN(ϕ

∗)
∣∣∣

= sup
ϕ∗∈Φn

∣∣∣∣∣ 1N
N∑
i=1

T∑
t=t0

[
∆ε̂i,t(ϕ

∗)2 −∆εi,t(ϕ
∗)2
]∣∣∣∣∣

= sup
ϕ∗∈Φn

∣∣∣∣∣ 1N
N∑
i=1

T∑
t=t0

[∆ε̂i,t(ϕ
∗)−∆εi,t(ϕ

∗)]2

∣∣∣∣∣+ sup
ϕ∗∈Φn

∣∣∣∣∣ 2N
N∑
i=1

T∑
t=t0

∆εi,t(ϕ
∗) [∆ε̂i,t(ϕ

∗)−∆εi,t(ϕ
∗)]

∣∣∣∣∣
≤ sup

β∗
h∈Bh

∣∣∣∣∣ 1N
N∑
i=1

T∑
t=t0

{[Ψϑ2N
(vi,t)−Ψϑ2N

(v̂i,t)]
′βh − [Ψϑ2N

(vi,t−1)−Ψϑ2N
(v̂i,t−1)]

′βh}2
∣∣∣∣∣

+ sup
ϕ∗∈Φn

∣∣∣∣∣ 2N
N∑
i=1

T∑
t=t0

∆εi,t(ϕ
∗) {[Ψϑ2N

(vi,t)−Ψϑ2N
(v̂i,t)]

′βh − [Ψϑ2N
(vi,t−1)−Ψϑ2N

(v̂i,t−1)]
′βh}

∣∣∣∣∣
= D1 + 2D2. (C.3)
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Given

D1 ≤ sup
βh∈Bh

∣∣∣∣∣ 1N
N∑
i=1

T∑
t=t0

{[Ψϑ2N
(vi,t)−Ψϑ2N

(v̂i,t)]
′βh}2

∣∣∣∣∣
+ sup

β∗
h∈Bh

∣∣∣∣∣ 1N
N∑
i=1

T∑
t=t0

{[Ψϑ2N
(vi,t−1)−Ψϑ2N

(v̂i,t−1)]
′βh}2

∣∣∣∣∣ ,
which each part yields a similar structure as A1 in Theorem 1-time series, thus we can

directly apply the results of (A.4) and obtain D1 = Op

[
∥Ψϑ2N

∥21 (ϑ
−2η
1N + ϑ1N/N)ϑ2N

]
.

Similarly, for D2, we apply the results of A2 (eq. A.7)) in the times series part, we have

D2 ≤ sup
ϕ∗∈Φn

∣∣∣∣∣ 2N
N∑
i=1

T∑
t=t0

∆εi,t(ϕ
∗)[Ψϑ2N

(vi,t)−Ψϑ2N
(v̂i,t)]

′βh

∣∣∣∣∣
+ sup

ϕ∗∈Φn

∣∣∣∣∣ 2N
N∑
i=1

T∑
t=t0

∆εi,t(ϕ
∗)[Ψϑ2N

(vi,t−1)−Ψϑ2N
(v̂i,t−1)]

′βh

∣∣∣∣∣
= Op

[
∥∇Ψϑ2N

∥1 (ϑ
−η
1N +

√
ϑ1N/N)

√
ϑ2N

]
, (C.4)

given 1/N
∑N

i=1

∑T
t=t0

∆ε2i,t ≤ ∞, under Assumptions P1.1 and P2.3(implies E[∆εi,t(ϕ
∗)]

is bounded over all ϕ∗ ∈ Φn) and the Uniform Law of Large Numbers(ULLN).

(P2 :) Note that P2 yields a uniform convergence condition of our objective function.

To establish P2, similar to the time series model, we rely on the conclusion of Corollary

2.2 in Newey (1991). Again, we check three conditions required by the Corollary, (1)

the compactness of the parameter space; (2) the point-wise convergence of the objective

function SN(ϕ
∗), and (3) the stochastic equicontinuity of SN(ϕ

∗). Note the compactness of

Φn is given by our Assumption P3.2(a). We only need to show Conditions (2) and (3).

First, we prove the point-wise convergence(Condition (2)). With a fixed time period

and an i.i.d. assumption over i, the point-wise convergence holds by directly applying the

WLLN for the i.i.d. sequence.

Then, based on the point-wise convergence, in our case, we show the uniform conver-

gence (Condition (3)). To do that, it is sufficient to apply the results of Condition 3A of

Newey (1991). Next, we show that Condition 3A holds in our case. Viewing SN(ϕ) as the

13



average of the sum squared differences between error term in time t and t − 1, each part

has a similar structure as in the time series model, thus the Condition 3A of Newey (1991)

also holds here and we obtain P2 = op(1).

Given P1 and P2 both op(1), we establish the prove the uniform convergence results

(C.2), which implies (C.1). Then, we finish proving all conditions required by Theorem

3.1 of Chen (2007) and obtain the consistency of our proposed estimator, as N → ∞,

d(ϕ̂∗
N , ϕ0) = op(1).

C.2 Convergence rate

In this section, we establish the convergence rate of our proposed sieve estimate in the

panel KTR model. Similar to the time-series KTR model, we establish the convergence by

applying the result of Theorem 3.2 in Chen (2007). To do that, we need to check Conditions

(3.7) and (3.8) in that theorem.

First, we check Condition 3.7 of theorem 3.2 in Chen (2007). In our case, it is equivalent

to verify

sup
ϕ∗∗∈Φn,d(ϕ∗∗,ϕ)≤ω

V ar
(
∆εi,t(ϕ

∗∗)2 −∆ε2i,t
)
, (C.5)

for any small 0 < ω < 1. By definition and ∆εi,t(ϕ
∗∗)2 − ∆ε2i,t = 2∆εi,t[∆εi,t(ϕ

∗∗) −

∆εi,t(ϕ)] + [∆εi,t(ϕ
∗∗)− εt]

2, we have

V ar
(
∆εi,t(ϕ

∗∗)2 −∆ε2i,t
)

≤ E
{
[∆εi,t(ϕ

∗∗)2 −∆ε2i,t]
2
}

≤ 8E
{
∆ε2i,t[∆εi,t(ϕ

∗∗)−∆εt]
2
}
+ E

{
[∆εi,t(ϕ

∗∗)−∆εi,t]
4
}

≤ constant× E
{
[∆εi,t(ϕ

∗∗)−∆εi,t]
2
}
+ 2

{
[∆εi,t(ϕ

∗∗)−∆εi,t]
4
}

constant1 × ω2 + constant2 × ω4, (C.6)

since E[∆εi,t(∆εi,t(ϕ
∗∗)−∆εi,t)] = E[E[∆ε2i,t|Fi,t−2, xi,t, xi,t−1, z1,i,t, z1,i,t−1, pi,t, pi,t−1](∆ε2i,t(ϕ

∗∗)−

∆εi,t)
2] ≤ constant × E[(∆εi,t(ϕ

∗∗) −∆εi,t)
2] under Assumptions P1.1(b)(c) and P2.3(b),
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and

E |εi,t(ϕ∗)−∆εi,t| ≤ E |∆xi,t(β0 − β)|

+E |δ0(Xi,t − τ2γ0)Ii,t(γ0)− δ(Xi,t − τ2γ)Ii,t(γ)|

+E ∥∆zi,t∥ ∥β30 − β3∥+ E |gv0(vi,t)− g∗v(vi,t)|

+2E |g∗v(vi,t−1)− gv0(vi,t−1)| ,

depends on the distance between ϕ∗∗ and ϕ0.

Next, we show Condition 3.8 of Chen (2007), which in our case is equivalent to show

sup
ϕ∗∗∈Φn,d(ϕ∗∗,ϕ0)≤δ

|∆εi,t(ϕ
∗∗)2 −∆ε2t | ≤ constant× δs ∥wi,t∥ , (C.7)

for any small 0 < δ < 1 and some s ∈ (0, 2). Using the results above we obtain

|∆εi,t(ϕ
∗∗)2 −∆ε2i,t| = [∆εi,t(ϕ

∗∗)−∆εi,t]
2 + 2|∆εi,t[∆εi,t(ϕ

∗∗)−∆εi,t]|

≤ constant1 × δ2 × ∥wi,t∥+ constant2 × δ × ∥wi,t∥

≤ constant× δ × ∥wi,t∥ (C.8)

which verifies (C.7) with s = 1.

Last, we calculate the convergence rate. Note that ∆εi,t(ϕ) = ∆ui,t(θ)−h0(vi,t, vi,t−1) =

[ui,t − gv0(vi,t)] − [ui,t−1 − gv0(vi,t−1)]. Similar as in the time-series model, denote GN ={
∆εi,t(ϕ

∗∗∗)2 −∆ε2i,t : d(ϕ
∗∗∗, ϕ0) ≤ ω1, ϕ

∗∗∗ ∈ ΦN

}
, and GN has a metric entropy with brack-

eting H[ ](ω1,GN , ∥·∥). It is clear that H[ ](ω1,GN , ∥·∥) can be decomposed as a summation

which each part has the same structure as in the time series model (A.2), thus we can di-

rectly apply that result and obtain the convergence rate of our proposed estimator, which

equals max
{√

ϑ2N/N, ϑ−η
2N

}
.
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D Proof of Theorem 2-panel

In this section, we establish the asymptotic normality of our sieve estimator by verifying

the conditions (2.1)-(2.6) as outlined in Theorem 2 of Chen et al. (2003), building upon the

consistency results of our proposed estimator7. Given the proofs above and under Assump-

tions P1.1(b) and P2.4(c), it is readily seen that Conditions (2.1)-(2.3) hold. Condition

(2.4) is not explicitly required here as in our case h enters mi,t linearly
8. Similar as in the

time series model, below, we only need to check Conditions (2.5) and (2.6) in details.

To show Condition 2.5(2.5′) of Chen et al. (2003) holds in our case with a β-mixing

sequence, we need to check following stochastic equicontinuity condition:

sup
ϕ,ϕ̃∈Φ,d(ϕ,ϕ̃)≤δ̃

∥∥∥∥∥1/N
N∑
i=1

T∑
t=t0

mi,t(θ, h)− E[
T∑

t=t0

mi,t(θ, h)]− 1/N
N∑
i=1

T∑
t=t0

mi,t(θ0, h0)

∥∥∥∥∥ = op(N
−1/2),

(D.1)

note (D.1) has a similar structure ‘as (B.1) in the time series part. Again, we apply the

result of Lemma 4.2 in Chen (2007), which holds under the Conditions (4.2.1)-(4.2.3).

In our case, Condition (4.2.1) is satisfied given 1/N
∑N

i=1

∑T
t=t0

mi,t(ϕ) to be locally uni-

formly L2 continuous with respect to (θ, h), which it is suffice to showE
∥∥∥mi,t(θ, h)−mi,t(θ̃, h̃)

∥∥∥2 ≤
7Note although the paper Chen et al. (2003) focus on an i.i.d. sequence, her Theorem 2 also works with

β-mixing data
8Chen et al. (2003) Remark 2(iii)
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constant× δ̃2. Recall the expression of Hi,t(θ) and ∆εi,t(ϕ), we have

E
∥∥∥mi,t(θ, h)−mi,t(θ̃, h̃)

∥∥∥2
= E

∥∥∥[mi,t(θ, h)−mi,t(θ, h̃)] + [mi,t(θ, h̃)−mi,t(θ̃, h̃)]
∥∥∥2

≤ 2E
∥∥∥Hi,t(θ)[∆εi,t(θ, h)−∆εi,t(θ̃, h̃)]

∥∥∥2
+2E

∥∥∥[Hi,t(θ)−Hi,t(θ̃)]∆εi,t(θ, h̃) +Hi,t(θ̃)[∆εi,t(θ, h̃)−∆εi,t(θ̃, h̃)]
∥∥∥2

≤ constant1 ×
{
E
∥∥∥Hi,t(θ)(h̃− h)

∥∥∥2 + E
∥∥∥wi,t(θ − θ̃)

∥∥∥2}
+constant2 ×

{
E
∥∥∥wi,t × h̃(θ − θ̃)

∥∥∥2 + E
∥∥∥wi,t(θ − θ̃)

∥∥∥2}
≤ constant× E ∥wi,t∥2 × δ̃2, (D.2)

the results is similar as (B.2), where we use Assumption P1.1(b)(finite moment conditions),

P2.3(b)(unknown functions are squared integrable) and P3.2(compact parameter space).

Note their Condition (4.2.2) holds as h belongs to a subset of Hölder functional space with

η > (1 + d1)/2, and Condition (4.2.3) is our Assumption P1.1. Thus, we verify Conditions

(4.2.1)-(4.2.3) of Lemma 4.2 in Chen (2007).

Next, we establish Condition (2.6) of Chen et al. (2003), which we need to prove the

asymptotic normality of 1/
√
N
∑N

i=1

∑T
t=t0

mi,t(θ0, ĥ). Here we apply the CLT following the

results of Lemma 5.1 in Newey and Mcfadden (1994) by checking his Conditions (5.1)-(5.3).

Again, as h(vi,t, vi,t−1) enters E[mi,t(θ, h)] linearly, his Conditions (5.1)(5.3) is automatically

satisfied. Thus, we only need to show his Condition (5.2). In our case, that requires

Hi,t(θ0)[ĥ(vi,t, vi,t−1)] to be stochasitic equicontinuity, and it directly follows the result of

(D.1).

E Lemma

Lemma 1. Denote Ωn,xx = 1
n

∑n
t=1Ψϑ1n(pxt)Ψϑ1n(pxt)

′, Ωn,zz =
1
n

∑n
t=1Ψϑ1n(pzt)Ψϑ1n(pzt)

′

and Ωn,vv = 1
n

∑n
t=1 Ψϑ2n(vt)Ψϑ2n(vt)

′. Under Assumptions T1.1, T2.2,T2.4 and T4 we
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have

(a)

E ∥Ωn,xx − E(Ωn,xx)∥ = O(ϑ1n/
√
n), (E.1)

E ∥Ωn,zz − E(Ωn,zz)∥ = O(ϑ1n/
√
n). (E.2)

(b)

λmin(Ωn,xx) = λminE(Ωn,xx) + op(1), λmax(Ωn,xx) = λmaxE(Ωn,xx) + op(1), (E.3)

λmin(Ωn,zz) = λminE(Ωn,zz) + op(1), λmax(Ωn,zz) = λmaxE(Ωn,zz) + op(1), (E.4)

(c) ∥∥Ω−1
n,xx − E(Ωn,xx)

−1
∥∥
sp

= Op(ϑ1n/
√
n), (E.5)

∥∥Ω−1
n,zz − E(Ωn,zz)

−1
∥∥
sp

= Op(ϑ1n/
√
n).. (E.6)

Proof. To save space, here we only prove (E.1), (E.3) and (E.5), other parts in Lemma 1

hold following similar process.

(a) First we prove (E.1), we need to show that

E ∥Ωn,xx − E(Ωn,xx)∥2 = O(ϑ2
1n/n). (E.7)

Note that the i-th row, j-th block element of matrix Ωn,xx equals 1
n

∑n
t=1Ψi(pxt)Ψj(pxt)

′,

we denote Ψi(pxt)Ψj(pxt)
′ as Ωij,t

xx . Similarly, denote E(Ωij,t
xx ) as the i-th row, j-th element

of matrix E(Ωn,xx). Following the definition of matrix norm, we can decompose (E.7) as

E ∥Ωn,xx − E(Ωn,xx)∥2

=

ϑ1n∑
i=1

ϑ1n∑
j=1

E
( 1
n

n∑
t=1

Ωij,t
xx − E(Ωij,t

xx )
)2

+
2

n

ϑ1n∑
i=1

ϑ1n∑
j=1

n−1∑
τ=1

(1− τ

n
)Cov(Ωij,1

xx ,Ωij,1+τ
xx )

= L1 + 2L2, (E.8)
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where we get L2 by applying a stationary covariance results implied by the β-mixing. Note

L1 captures the correlation within every certain t and L2 gives the time series dependence.

Under Assumption T2.2 and by the Triangular inequality and Cauchy–Schwarz inequality,

we have

L1 ≤ 2

n

n∑
t=1

ϑ1n∑
i=1

ϑ1n∑
j=1

E[Ωij,t
xx ]

2 +
2

n

ϑ1n∑
i=1

ϑ1n∑
j=1

[E(Ωij,t
xx )]

2

≤ 2

n

n∑
t=1

ϑ1n∑
i=1

ϑ1n∑
j=1

{
E[Ψi(pxt)]

4
}1/2 {

E[Ψj(pxt)]
4
}1/2

+
2

n

ϑ1n∑
i=1

ϑ1n∑
j=1

E[Ψi(pxt)]
2E[Ψj(pxt)]

2

= O(ϑ2
1n/n). (E.9)

For L2, we can apply the Davydov inequality for a β-mixing process with mixing coefficients

α(m), under Assumption T1.1, we have

L2 =
1

n

ϑ1n∑
i=1

ϑ1n∑
j=1

n−1∑
τ=1

(1− τ

n
)Cov(Ωij,1

xx ,Ωij,1+τ
xx )

≤ C

n

ϑ1n∑
i=1

ϑ1n∑
j=1

n−1∑
τ=1

(1− τ

n
)a(τ)1−1/2r

≤ Cϑ2
1n

n

n−1∑
τ=1

a(τ)1−1/2r

= O(ϑ2
1n/n), (E.10)

as a(τ)1−1/2r is a stationary process under Assumption T1.1. Combing L1 and L2, we prove

eq.(E.7) thus E.1.

(b) Then, (E.3) holds by applying the Weyl’s inequality in Seber (2008), we have

λmin(E(Ωn,xx)) + λmin(Ωn,xx − E(Ωn,xx)) ≤ λmin(Ωn,xx) ≤ λmin(E(Ωn,xx)) + λmax(Ωn,xx − E(Ωn,xx))(E.11)

Note that for a symmetric matrix (Ωn,xx − E(Ωn,xx)), we have

λmax(Ωn,xx − E(Ωn,xx)) = ∥Ωn,xx − E(Ωn,xx)∥sp ≤ ∥Ωn,xx − E(Ωn,xx)∥, and

−∥Ωn,xx − E(Ωn,xx)∥ ≤ λmin[Ωn,xx − E(Ωn,xx)].

Given that, and combining with the results we get in Lemma 1(a), we can rewrite (E.11)
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as

λmin(E(Ωn,xx))− ∥Ωn,xx − E(Ωn,xx)∥ ≤ λmin(Ωn,xx)

≤ λmin(E(Ωn,xx)) + ∥Ωn,xx − E(Ωn,xx)∥(E.12)

λmin(E(Ωn,xx))−Op(ϑ1n/
√
n) ≤ λmin(Ωn,xx)

≤ λmin(E(Ωn,xx)) +Op(ϑ1n/
√
n) (E.13)

Thus, under Assumption T4, we can prove that λmin(Ωn,xx) = λmin(E(Ωn,xx)) + op(1). The

second part of (E.3) and other parts in Lemma 1(b) can be proved following a similar

process, we do not repeat it here.

(c) Applying the sub-multiplicative property of the spectral norm, we apply the result

∥Ωn,xx − E(Ωn,xx)∥sp ≤ ∥Ωn,xx − E(Ωn,xx)∥ shown in Lemma1(b) and obtain

∥∥Ω−1
n,xx − E(Ωn,xx)

−1
∥∥
sp

=
∥∥Ω−1

n,xx(Ωn,xx − E(Ωn,xx))E(Ωn,xx)
−1
∥∥
sp

≤
∥∥Ω−1

n,xx

∥∥
sp
∥Ωn,xx − E(Ωn,xx)∥sp

∥∥E(Ωn,xx)
−1
∥∥
sp

≤
∥∥Ω−1

n,xx

∥∥
sp
∥Ωn,xx − E(Ωn,xx)∥

∥∥E(Ωn,xx)
−1
∥∥
sp

= Op(1)Op(ϑ1n/
√
n)Op(1), (E.14)

where
∥∥Ω−1

n,xx

∥∥
sp

= [λmin(Ωn,xx)]
−1 = [λmin(E(Ωn,xx)) + op(1)]

−1 = Op(1) under Assumption

T2.4(a).

Lemma 2. Under Assumption T2.4 and Lemma1, we have∥∥∥∥∥ 1n
n∑

t=1

Ψϑ1n(pxt)vxt

∥∥∥∥∥
2

= Op(ϑ1n/n), (E.15)∥∥∥∥∥ 1n
n∑

t=1

Ψϑ1n(px)v
k2
z

∥∥∥∥∥
2

= Op(ϑ1n/n), for k2 = 1, ..., d1. (E.16)

Proof. Following the definition, under Assumption T2.4(b), we have
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∥∥∥∥∥ 1n
n∑

t=1

Ψϑ(pxt)vxt

∥∥∥∥∥
2

=
1

n
tr

{
1

n

n∑
t=1

[Ψϑ1n(pxt)Ψϑ1n(pxt)
′v2xt]

}

=
ϑ1n

n
λmax

{
1

n

n∑
t=1

[Ψϑ1n(pxt)Ψϑ1n(pxt)
′v2xt]

}
= Op(ϑ1n/n)

(E.17)

where (E.17) holds if λmax

{
1
n

∑n
t=1[Ψϑ1n(pxt)Ψϑ1n(pxt)

′v2xt]
}
= λmax {E[Ψϑ1n(pxt)Ψϑ1n(pxt)

′v2xt]}+

op(1).

The proof is similar as Lemma1(b), it is suffice to show∥∥{ 1
n

∑n
t=1[Ψϑ1n(pxt)Ψϑ1n(pxt)

′v2xt]
}
− E[Ψϑ1n(pxt)Ψϑ1n(pxt)

′v2xt]
∥∥2 = op(1).

Following (E.8), (E.9) and (E.10) by replacing Ωn,xx and E(Ωn,xx) by
1
n

∑n
t=1[Ψϑ1n(pxt)Ψϑ1n(pxt)

′v2xt]

and E[Ψϑ1n(pxt)Ψϑ1n(pxt)
′v2xt], respectively. (E.16) can be proved following the same pro-

cess.

Lemma 3. Under Assumptions T2.2, T2.3, T2.4 and Lemma 1, 2, we have

1

n

n∑
t=1

∥v̂t − vt∥2 = Op(ϑ
−2η
1n + ϑ1n/n). (E.18)

Proof. To simplify our analysis, we establish the convergence of vxt, and then, the conver-

gence of other parts of v̂t hold following a similar routine. Recall the definition of vxt and

v̂xt in our main text, applying the Triangular inequality, we have

1

n

n∑
t=1

(v̂xt − vxt)
2 =

1

n

n∑
t=1

[gx0(pxt)− ĝ∗x(pxt)]
2

≤ 2

n

n∑
t=1

[gx0(pxt)−Ψϑ1n(pxt)
′βx0]

2 +
2

n

n∑
t=1

[Ψ′
ϑ1n

(βx0 − β̂x)]
2

= Op(ϑ
−2η
1n ) +Op

∥∥∥βx0 − β̂x

∥∥∥2 , (E.19)

under Assumption T2.3, and 1
n

∑n
t=1 ∥Ψϑ1n(pxt)∥

2 = tr
{

1
n

∑n
t=1[Ψϑ1n(pxt)Ψϑ1n(pxt)

′]
}

=

Op(1)(Assumption T4.2(a)). The last part is
∥∥∥β̂x − β̂x0

∥∥∥. Following the expression of the
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control function, we have

∥∥∥β̂x − βx0

∥∥∥ ≤

∥∥∥∥∥∥
[
1

n

n∑
t=1

Ψϑ1n(pxt)Ψϑ1n(pxt)

]−1
1

n

n∑
t=1

Ψϑ1n(pxt)[xt −Ψϑ1n(pxt)
′βx0]

∥∥∥∥∥∥
≤ 1

λmin(Ωn,xx)

∥∥∥∥∥ 1n
n∑

t=1

Ψϑ1n(pxt) [vxt + gx0(pxt)−Ψϑ1n(pxt)
′βx0]

∥∥∥∥∥
≤ 1

λmin(Ωn,xx)

{∥∥∥∥∥ 1n
n∑

t=1

Ψϑ1n(pxt)vxt

∥∥∥∥∥+
∥∥∥∥∥ 1n

n∑
t=1

Ψϑ1n [gx0(pxt)−Ψϑ1n(pxt)
′βx0]

∥∥∥∥∥
}

= Op(1)Op(
√

ϑ1n/n+ ϑ−η
1n ) = Op(

√
ϑ1n/n+ ϑ−η

1n ), (E.20)

which holds under Lemma 1, 2 and Assumption T2.4(a).

Combining (E.19) and (E.20), we conclude that 1
n

∑n
t=1(v̂xt − vxt)

2 = Op((ϑ
−2η
1n + ϑ1n/n).

Similarly, we can prove that 1
n

∑n
t=1(v̂

k2
zt − vk2zt )

2 = Op((ϑ
−2η
1n + ϑ1n/n), for k2 = 1, .., d1. In

summary, we have 1
n

∑n
t=1 ∥v̂t − vt∥2 = (1+ d1)Op((ϑ

−2η
1n +ϑ1n/n) = Op((ϑ

−2η
1n +ϑ1n/n)

9.

F Variance-covariance matrix

In this section, we give the expression of the sample variance-covariance matrix in practice.

(1) In Theorem 2-Time series, the estimator of the variance-covariance matrix takes the

form, (L̂′
nL̂n)

−1L̂′
nV̂nL̂n(L̂

′
nL̂n)

−1, where L̂n = 1
n

∑n
t=1 L̂t with

9As we assume elements of vt are pairwise independent.
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L̂t = 

−(xt − γ̂)2 −(xt − γ̂)2I(xt ≥ γ̂)

−(xt − γ̂)2I(xt ≥ γ̂) (xt − γ̂)2I(xt ≥ γ̂)

−zt(xt − γ̂) zt(xt − γ̂)I(xt ≥ γ̂)

−[β̂ + δ̂I(xt ≥ γ̂)](xt − γ̂) −[εt(ϕ̂
∗)− (β̂ + δ̂)(xt − γ̂)]I(xt ≥ γ̂)

−(xt − γ̂) −(xt − γ̂)I(xt ≥ γ̂)

−(xt − γ̂)z′i,t −[β̂ + δ̂I(xt ≥ γ̂)](xt − γ̂)

−(xt − γ̂)I(xt ≥ γ̂)z′t −(β̂ + δ̂)(xt − γ̂)I(xt ≥ γ̂)

ztz
′
t zt[β̂ + δ̂I(xt ≥ γ̂)]

−[β̂ + δ̂I(xt ≥ γ̂)]z′t −[β̂ + δ̂I(xt ≥ γ̂)]2

z′t −[β̂ + δ̂I(xt ≥ γ̂)]xt


,

note L̂t has a similar structure to Q̂ in Hansen (2017), except we extended the last row

with the partial derivatives of the unknown function h(·).

(2) Following Theorem 2-panel, with parametric estimator θ̂ = (β̂′, γ̂)′, the variance-

covariance matrix has the expression (L̂′
N L̂N)

−1L̂′
NVN L̂N(L̂′

N L̂N)
−1, where L̂N = 1

N

∑N
i=1

∑T
t=t0

L̂i.t,
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with

L̂i,t =

−∆x2
i,t −∆xi,t(Xi,t − τ2γ̂)Ii,t(γ̂)

−(Xi,t − τ2γ̂)Ii,t(γ̂)∆xi,t [(Xi,t − τ2γ̂)Ii,t(γ̂)]
2

−∆zi,t∆xi,t −∆zi,t(Xi,t − τ2γ̂)Ii,t(γ̂)

−δ̂τ ′2Ii,t(γ̂)∆xi,t −τ ′2Ii,t(γ̂)εi,t(ϕ̂
∗) + δ̂τ ′2Ii,t(γ̂)(Xi,t − τ2γ̂)Ii,t(γ̂)

−∆xi,t −(Xi,t − τ2γ̂)Ii,t(γ̂)

−∆xi,t∆z′i,t δ̂∆xi,tτ
′
2Ii,t(γ̂)

−(Xi,t − τ2γ̂)Ii,t(γ̂)∆z′i,t (Xi,t − τ2γ̂)Ii,t(γ̂)δ̂τ
′
2Ii,t(γ̂)

∆zi,t∆z′i,t δ̂∆zi,tτ
′
2Ii,t(γ̂)

−δ̂τ ′2Ii,t(γ̂)∆z′i,t δ̂2Ii,t(γ̂)
′Ii,t(γ̂)

∆z′i,t δ̂τ ′2Ii,t(γ̂)


.

G Endogeneity test

In this section, we construct a Wald-type test to test the potential endogeneity of our

threshold variable, x, and regressors, z. For a time-series KTR model, under our setup, we

can express the null hypothesis H0 of no endogeneity and the alternative hypothesis H1 as

H0 : h(·) = 0; H1 : h(·) ̸= 0. (G.1)

For sieve approximation, we can equivalently rewrite the above hypothesis testing as

H0 : βh0 = 0ϑ2n ; H1 : βh0 ̸= 0ϑ2n .

Recall that in the estimation of the time-series model, we can express the estimator β̂h by

a partial linear regression. Denote X̃(γ̂) = [x1(γ̂), ..., xn(γ̂)]
′, x̃t(γ̂) = [xt− γ̂, (xt− γ̂)I(xt ≥

γ̂), z′t], and M̃(γ̂) = In − X̃(γ̂)[X̃(γ̂)′X̃(γ̂)]−1X̃(γ̂), we have

β̂h = [Ψϑ2n(v̂)M̃(γ̂)Ψϑ2n(v̂)]
−1Ψϑ2n(v̂)

′M̃(γ̂)y (G.2)
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Following the covariance estimator introduced by Andrews (1991), we construct a Wald

statistic:

Wn = β̂h

′
Ψϑ2n(v̂)M̃(γ̂)Ψϑ2n(v̂)

′[Ψϑ2n(v̂)
′M̃(γ̂)Jn(γ̂)M̃(γ̂)Ψϑ2n(v̂)]

−1

×Ψϑ2n(v̂)M̃(γ̂)Ψϑ2n(v̂)
′β̂h, (G.3)

where Jn(γ̂) is an n by n diagonal matrix with typical elements equal to ε̂2t/(1− Q̂tt), Q̂tt is

the (t, t)th element of M̃(γ̂)Ψϑ2n(v̂)
′[Ψϑ2n(v̂)

′M̃(γ̂)Jn(γ̂)M̃(γ̂)Ψϑ2n(v̂)]
−1Ψϑ2n(v̂)M̃(γ̂), and

ε̂t = yt − β̂1(xt − γ̂) − δ̂(xt − γ̂)I(xt ≥ γ̂) − z′tβ̂3 − Ψ′
ϑ2n

β̂h. Then for n large enough,

Wn convergence to a Chi-squared distribution with ϑ2n degree of freedom under the null

hypothesis. For the panel data model, the setup is similar, so we do not repeat it here.
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H Monte Carlo results

Table 1: DGP1- Polynomials order changes

β1 δ β3 γ

bias rmse bias rmse bias rmse bias rmse

ϑ1n = ϑ2n = 6 n=100 0.2527 0.5264 0.2304 0.5929 -0.0557 0.0737 -0.4081 0.6009

n=200 0.1688 0.319 0.0561 0.2674 -0.0295 0.0498 -0.2706 0.4353

n=400 0.0977 0.1974 -0.0199 0.1443 -0.0148 0.0341 -0.1278 0.2332

ϑ1n = ϑ2n = 5 n=100 0.1873 0.5022 0.1992 0.6053 -0.0492 0.0711 -0.3908 0.6024

n=200 0.1066 0.2928 0.049 0.2878 -0.0241 0.0485 -0.2504 0.429

n=400 0.0539 0.1824 -0.0173 0.1382 -0.0112 0.0336 -0.1153 0.2191

ϑ1n = ϑ2n = 4 n=100 0.0709 0.5289 0.2756 0.8135 -0.0271 0.0379 -0.4686 0.7476

n=200 0.1068 0.2576 0.1169 0.3543 -0.0149 0.0247 -0.2595 0.5235

n=400 0.104 0.1647 0.0511 0.2223 -0.0095 0.0171 -0.1166 0.3124

ϑ1n = ϑ2n = 3 n=100 0.0319 0.4545 0.264 0.7322 -0.0221 0.0353 -0.3921 0.7265

n=200 0.0687 0.2327 0.1447 0.4117 -0.0114 0.0232 -0.1899 0.5224

n=400 0.078 0.1453 0.0762 0.2751 -0.0072 0.0161 -0.0689 0.3233

Note: This table presents the effect of the order of polynomials using DGP1, we change ϑ1n

and ϑ2n among 3, 4, 5, 6, where ϑ1n and ϑ2n are the order of Hermite basis functions for our

first step and second step estimation, respectively;
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Table 2: DGP2-Polynomials order changes

β1 δ β3 γ

T=10 bias rmse bias rmse bias rmse bias rmse

ϑ2N = ϑ1N = 6 N=20 0.0984 0.4585 0.0696 0.5318 0.3123 0.3809 -0.405 0.6754

N=40 0.0705 0.2432 -0.0223 0.217 0.1457 0.2088 -0.1863 0.3786

N=80 0.0126 0.1365 -0.0305 0.1219 0.0551 0.1139 -0.0849 0.1821

ϑ2N = ϑ1N = 5 N=20 0.0218 0.4483 0.0799 0.5241 0.267 0.3377 -0.385 0.6571

N=40 0.0118 0.2283 -0.0099 0.2156 0.136 0.1967 -0.1765 0.3703

N=80 -0.0284 0.1376 -0.0216 0.1211 0.0673 0.1172 -0.0827 0.1821

ϑ2N = ϑ1N = 4 N=20 0.0936 0.3553 0.0795 0.481 0.3225 0.3483 -0.2762 0.5837

N=40 0.1096 0.1946 0.0082 0.2356 0.2587 0.2722 -0.1074 0.3273

N=80 0.0936 0.1296 -0.0132 0.1251 0.2251 0.2324 -0.0583 0.149

ϑ2N = ϑ1N = 3 N=20 0.0319 0.3287 0.1272 0.5009 0.3541 0.3799 -0.2172 0.5867

N=40 0.0658 0.1689 0.0354 0.2581 0.31 0.3243 -0.0801 0.3203

N=80 0.0613 0.1085 0.0014 0.1492 0.2866 0.2941 -0.047 0.1469

Note: This table presents the effect of the order of polynomials using DGP2, we change ϑ1N

and ϑ2N among 3, 4, 5, 6, where ϑ1N and ϑ2N are the order of Hermite basis functions for our

first step and second step estimation, respectively;
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I Dataset description

Table 3: Summary Statistics

Canada data (July 2020-Sep 2021)

Variable Obs Mean Std. Dev. Min Max

Case 126 7.2135 2.7987 0 11.6392

Test 126 11.4824 1.4961 8.5067 14.3842

Une 126 8.6537 1.9709 5.6 15.3

US data (July 2020-Dec 2021)

Variable Obs Mean Std. Dev. Min Max

Case 884 10.0783 1.4022 4.8283 13.9584

Test 884 12.4150 1.4469 7.7998 16.0631

Une 884 5.5887 1.9557 1.9 14.8

NOTE: Case = natural logarithm of the number of COVID-

19 cases confirmed; Test = natural logarithm of the number of

COVID-19 test performed; Une =Unemployment rate (Seasonal

adjusted).
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Table 4: Province(Canada) or State(US) in our data set

Canada US

Alberta Alaska Kentucky Ohio

British Columbia Alabama Louisiana Oklahoma

Manitoba Arkansas Massachusetts Oregon

New Brunswick Arizona Maryland Pennsylvania

Newfoundland and Labrador California Maine Puerto Rico

Nova Scotia Colorado Michigan Rhode Island

Ontario Connecticut Minnesota South Carolina

Prince Edward Island District of Columbia Missouri South Dakota

Quebec Delaware Mississippi Tennessee

Saskatchewan Florida Montana Texas

10 Georgia North Carolina Utah

New York North Dakota Virginia

Hawaii Nebraska Vermont

Iowa New Hampshire Washington

Idaho New Jersey Wisconsin

Illinois New Mexico West Virginia

Indiana Nevada Wyoming

Kansas

52
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