Lab 10 Solutions PARTS

March 24, 2017

1 Chapter 11.3.7 page 436

Question: Use the total differential to find the MRTS for the production function

$$
\begin{equation*}
y=\left[0.3 x_{1}^{-3}+0.7 x_{2}^{-3}\right]^{-\frac{1}{3}} \tag{1}
\end{equation*}
$$

Show that its isoquants are strictly convex to the origin.
Hints:

$$
\begin{gather*}
d y=-\frac{1}{3}\left[0.3 x_{1}^{-3}+0.7 x_{2}^{-3}\right]^{-\frac{4}{3}} 0.3(-3) x_{1}^{-4} d x_{1}-\frac{1}{3}\left[0.3 x_{1}^{-3}+0.7 x_{2}^{-3}\right]^{-\frac{4}{3}} 0.7(-3) x_{2}^{-4} d x_{2} \tag{2}\\
d y=\left[0.3 x_{1}^{-3}+0.7 x_{2}^{-3}\right]^{-\frac{4}{3}} 0.3 x_{1}^{-4} d x_{1}+\left[0.3 x_{1}^{-3}+0.7 x_{2}^{-3}\right]^{-\frac{4}{3}} 0.7 x_{2}^{-4} d x_{2} \tag{3}
\end{gather*}
$$

Along an isoquant line, $\mathrm{dy}=0$, we have,

$$
\begin{equation*}
M R T S=\left|\frac{d x_{2}}{d x_{1}}\right|=\left|-\frac{3 x_{1}^{-4}}{7 x_{2}^{-4}}\right|=\left|\frac{3 x_{2}^{4}}{7 x_{1}^{4}}\right| \tag{4}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\frac{d^{2} x_{2}}{d x_{1}^{2}}=\frac{\partial\left(-\frac{3 x_{1}^{-4}}{7 x_{2}^{-4}}\right)}{\partial x_{1}}=-\frac{3 x_{2}^{4}}{7 x_{1}^{5}}(-4)=\frac{12 x_{2}^{4}}{7 x_{1}^{5}}>0 \tag{5}
\end{equation*}
$$

\Rightarrow Its isoquants are strictly convex

2 Chapter 11.5.5 page 451

Question: Use theorem 11.7 to show that the function

$$
\begin{equation*}
y=\left(x_{1}+x_{2}\right)^{1 / 2} \tag{6}
\end{equation*}
$$

defined on \mathbb{R}_{++}^{\notin}, is a concave function. Show that there are linear segments on the surface of this function and so the function is not strictly concave (see example 11.27).

Theorem 11.7: If the function $y=f(x 1, x 2)$ defined on $\mathbb{R}^{\not \vDash}$ is twice continuously differentiable, then it is concave if and only if

$$
\begin{equation*}
d^{2} y=f_{11} d x_{1}^{2}+2 f_{12} d x_{1} d x_{2}+f_{22} d x_{2}^{2} \leq 0 \tag{7}
\end{equation*}
$$

Hints:

$$
\begin{gather*}
f_{1}=\frac{1}{2}\left(x_{1}+x_{2}\right)^{-\frac{1}{2}}=f_{2} \tag{8}\\
f_{11}=f_{12}=f_{21}=f_{22}=-\frac{1}{4}\left(x_{1}+x_{2}\right)^{-\frac{3}{2}} \tag{9}
\end{gather*}
$$

Therefore,

$$
\begin{gather*}
d y=f_{11} d x_{1}^{2}+2 f_{12} d x_{1} d x_{2}+f_{22} d x_{2}^{2} \tag{10}\\
=-\frac{1}{4}\left(x_{1}+x_{2}\right)^{-\frac{3}{2}} d x_{1}^{2}-\frac{1}{2}\left(x_{1}+x_{2}\right)^{-\frac{3}{2}} d x_{1} d x_{2}-\frac{1}{4}\left(x_{1}+x_{2}\right)^{-\frac{3}{2}} d x_{2}^{2} \tag{11}\\
=-\frac{1}{4}\left(x_{1}+x_{2}\right)^{-\frac{3}{2}}\left(d x_{1}^{2}+2 d x_{1} d x_{2}+d x_{2}^{2}\right) \tag{12}\\
=-\frac{1}{4}\left(x_{1}+x_{2}\right)^{-\frac{3}{2}}\left(d x_{1}+d x_{2}\right)^{2}<0 \tag{13}
\end{gather*}
$$

By theorem $11.7 \Rightarrow$ it is a concave function.
To show it is not strictly concave, let $x_{2}=a-x_{1}$,
$\Rightarrow y=a^{1 / 2} \Rightarrow$ there are linear segments on the surface of this function.

