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Question: Use the total differential to find the MRTS for the production function
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Show that its isoquants are strictly convex to the origin.

Hints:
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Along an isoquant line, dy=0, we have,
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⇒ Its isoquants are strictly convex
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Question: Use theorem 11.7 to show that the function

y = (x1 + x2)1/2 (6)

defined on R2
++ , is a concave function. Show that there are linear segments on the surface of this function and

so the function is not strictly concave (see example 11.27).

Theorem 11.7: If the function y = f(x1, x2) defined on R2 is twice continuously differentiable, then it is
concave if and only if
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2 ≤ 0 (7)
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Hints:
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By theorem 11.7 ⇒ it is a concave function.

To show it is not strictly concave, let x2 = a− x1,

⇒ y = a1/2 ⇒ there are linear segments on the surface of this function.
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