Lab 2 Solutions (PARTS)

January 30, 2017

1 Chapter 5.6

Question: Suppose that a firm's total product function is $y=40 L^{2}-L^{3}$. Show that the average product of labor, $A P(L)$, rises when marginal product of labor, $M P(L)$, exceeds $A P(L)$, falls when $M P(L)$ is less than $A P(L)$, and is horizontal at the point where $M P(L)=A P(L)$.

Hints: At $M P(L)=A P(L)$, we can derive that:

$$
\begin{gather*}
80 L-3 L^{2}=40 L-L^{2} \tag{1}\\
L=20 \tag{2}
\end{gather*}
$$

Therefore, we have:

$$
\left\{\begin{array}{l}
\text { if } L<20, \rightarrow M P(L)>A P(L) \tag{3}\\
\text { if } L=20, \rightarrow M P(L)=A P(L) \\
\text { if } L>20, \rightarrow M P(L)<A P(L)
\end{array}\right.
$$

Now, let's find the derivative of $A P(L)$ (we should determine the sign of the derivative at each labor level to inference the increasing, decreasing and horizontal intervals):

Differentiate $A P(L)$ w.r.t L, we have:

$$
\begin{gather*}
F O C: \frac{d A P(L)}{d L}=40-2 L=0 \Rightarrow L=20 \tag{4}\\
S O C: \frac{d^{2} A P(L)}{d L^{2}}=-2<0 \Rightarrow \text { strictly concave } \tag{5}
\end{gather*}
$$

By checking the sign in second order, we find the interior solution in FOC gives us the maximum point. Also, the $A P(L)$ is a concave function in L.

From (4), we have:

$$
\left\{\begin{array}{l}
\text { if } L>20, \rightarrow \frac{d A P(L)}{d L}<0 \rightarrow A P(L) \text { is decreasing in } L \tag{6}\\
\text { if } L=20, \rightarrow \frac{d A P(L)}{d L}=0 \rightarrow A P(L) \text { is horizontal in } L \\
\text { if } L<20, \rightarrow \frac{d A P(L)}{d L}>0 \rightarrow A P(L) \text { is increasing in } L
\end{array}\right.
$$

Combine (3) \& (6), we find that:

$$
\begin{align*}
& \text { If } M P(L)<A P(L) \Rightarrow A P(L) \text { is decreasing in } L \tag{7}\\
& \text { If } M P(L)=A P(L) \Rightarrow A P(L) \text { is horizontal in } L \tag{8}\\
& \text { If } M P(L)>A P(L) \Rightarrow A P(L) \text { is increasing in } L \tag{9}
\end{align*}
$$

This completes our proof.

2 Chapter 5.7

Question: A firm uses one input (L) to generate output (q) according to the production function $q=a L^{b}, a>0$, and $b>0$ (also $L \geq 0$). The input price is w and fixed costs are $c 0$. Show that $\frac{d q}{d L}$ is rising if $\frac{d C}{d q}$ is falling, $\frac{d q}{d L}$ is falling if $\frac{d C}{d q}$ is rising, and $\frac{d q}{d L}$ neither rises nor falls if $\frac{d C}{d q}$ neither rises nor falls. How does your answer relate to the value of b? How does your result relate to the inverse function rule for differentiation?

Hints: Let's find the total cost function first:

$$
\begin{equation*}
C=\text { fixed cost }+ \text { variable cost }=c 0+w L(q) \tag{10}
\end{equation*}
$$

Now, we rewrite the production function as:

$$
\begin{equation*}
L=\left(\frac{q}{a}\right)^{1 / b} \tag{11}
\end{equation*}
$$

Substitute (11) into (10), we have the total cost as a function of output:

$$
\begin{equation*}
C=c 0+w *\left(\frac{q}{a}\right)^{1 / b} \tag{12}
\end{equation*}
$$

Therefore, we can characterize $\frac{d q}{d L} \& \frac{d C}{d q}$ by differentiating q w.r.t $L \&$ differentiating C w.r.t q respectively:

$$
\begin{align*}
\frac{d q}{d L} & =a b(L)^{b-1} \tag{13}\\
\frac{d C}{d q} & =\frac{w}{a b}\left(\frac{q}{a}\right)^{\frac{1-b}{b}} \tag{14}
\end{align*}
$$

Now, if $\frac{d C}{d q}$ is falling in q, this implies:

$$
\begin{equation*}
\frac{d^{2} C}{d q^{2}}=\frac{w(1-b)}{a^{2} b^{2}}\left(\frac{q}{a}\right)^{\frac{1-2 b}{b}}<0 \tag{15}
\end{equation*}
$$

Notice that all other terms besides $(1-b)$ are positive defined. In order to make $\frac{d^{2} C}{d q^{2}}<0$, we need:

$$
\begin{equation*}
1-b<0 \Rightarrow b>1 \tag{16}
\end{equation*}
$$

Now, let's find the sign of $\frac{d^{2} q}{d L^{2}}$ conditional on $b>1$:

$$
\begin{equation*}
\left.\frac{d^{2} q}{d L^{2}}\right|_{b>1}=\left.a b(b-1) L^{b-2}\right|_{b>1}>0 \tag{17}
\end{equation*}
$$

Where the greater sign follows $a>0, b>1 \& L$ is non-negative.
Combine (15), (16) \& (17), we proved that $\frac{d q}{d L}$ is rising if $\frac{d C}{d q}$ is falling. Similar proof applies for proving $\frac{d q}{d L}$ is falling if $\frac{d C}{d q}$ is rising, and $\frac{d q}{d L}$ neither rises nor falls if $\frac{d C}{d q}$ neither rises nor falls.

In conclusion, If $b<1$, then $\frac{d q}{d L}$ is decreasing in L and $\frac{d C}{d q}$ is increasing in q. If $b>1$, then $\frac{d q}{d L}$ is increasing in L and $\frac{d C}{d q}$ is decreasing in q. If $b=1$ then $\frac{d q}{d L}$ and $\frac{d C}{d q}$ are neither increasing nor decreasing.

