Lab 5 Solutions PARTS

February 17, 2017

1 Chapter 7.2

Question: Solve the following pairs of equations by substitution and by elimination.
Hints: We will use substitution method to solve (a), elimination method to solve (b), Gauss Jordan row reduction to solve (c).
(a)

$$
\begin{gather*}
y=24-x \tag{1}\\
2 y=4+5 x \tag{2}
\end{gather*}
$$

Substitution (1) into (2):

$$
\begin{equation*}
2(24-x)=4+5 x \Rightarrow x=\frac{44}{7} \Rightarrow y=\frac{124}{7} \tag{3}
\end{equation*}
$$

(b)

$$
\begin{align*}
-y & =-8 x-4 \tag{4}\\
y & =20 x+2 \tag{5}
\end{align*}
$$

Let $(4)+(5)$, we have:

$$
\begin{equation*}
0=12 x-2 \Rightarrow x=\frac{1}{6} \Rightarrow y=\frac{16}{3} \tag{6}
\end{equation*}
$$

(c)

$$
\begin{gather*}
0.5 y+2 x=0 \tag{7}\\
-y+x=0 \tag{8}
\end{gather*}
$$

Expressing this in matrix form, we can arrive at the reduced row-echelon form through the following steps:

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
0.5 & 2 & 0 \\
-1 & 1 & 0
\end{array}\right] \Rightarrow \text { row } 1 \times 2 \Rightarrow\left[\begin{array}{ccc}
1 & 4 & 0 \\
-1 & 1 & 0
\end{array}\right] \Rightarrow \text { row } 2+\text { row } 1 \Rightarrow\left[\begin{array}{lll}
1 & 4 & 0 \\
0 & 5 & 0
\end{array}\right] \Rightarrow} \\
& \quad \Rightarrow \text { row } 2 \div 2 \Rightarrow\left[\begin{array}{lll}
1 & 4 & 0 \\
0 & 1 & 0
\end{array}\right] \Rightarrow \text { row } 1-4 \times \text { row } 2 \Rightarrow\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
\end{aligned}
$$

From above row-reduced-echelon form, we have

$$
\begin{equation*}
x=0, y=0 \tag{9}
\end{equation*}
$$

(d)

$$
\begin{gather*}
0.5 y+2 x=0 \tag{10}\\
-y-4 x=0 \tag{11}
\end{gather*}
$$

We have infinite solution to above 2 by 2 linear equation system. This is because one is linear dependent on another. To see this, suppose, we let (10) $\times-2$, we find the the equation becomes (11).

2 Chapter 7.3

Question: Which of the following systems are linearly dependent and which are inconsistent?

Hints:

(a)

$$
\begin{gather*}
2 x+y-z=10 \tag{12}\\
4 y+2 z=4 \tag{13}\\
x=0 \tag{14}
\end{gather*}
$$

Substitute (14) into (12):

$$
\begin{equation*}
y-z=10 \Rightarrow y=10+z \tag{15}
\end{equation*}
$$

Now substitute (15) into (13):

$$
\begin{equation*}
4(10+z)+2 z=4 \Rightarrow z=-6 \tag{16}
\end{equation*}
$$

Now, we substitute $z=-6$ back to (13),

$$
\begin{equation*}
4 y-12=4 \Rightarrow y=4 \tag{17}
\end{equation*}
$$

Therefore, we have a unique solution, which can be characterized as following and means that the linear equations are linearly independent with each other and the linear system is consistent.

$$
\left\{\begin{array}{l}
x=0 \tag{18}\\
y=4 \\
z=-6
\end{array}\right.
$$

Consider, instead, if (12) is in form: $2 z+y-z=10$, we may have an inconsistent problem in our linear system.
(b)

$$
\begin{gather*}
-y+z=0 \tag{19}\\
4 x+2 y-z / 3=0 \tag{20}\\
x+z=0 \tag{21}
\end{gather*}
$$

Now, subtract (21) from (19),

$$
\begin{equation*}
x+y=0 \tag{22}
\end{equation*}
$$

Let (21) be divided by 3 both sides and plus (20),

$$
\begin{equation*}
\frac{x}{3}+\frac{z}{3}+4 x+2 y-\frac{z}{3}=0 \Rightarrow \frac{13}{3} x+2 y=0 \Rightarrow \frac{13}{6} x+y=0 \tag{23}
\end{equation*}
$$

Now, subtract (23) from (22),

$$
\begin{equation*}
\frac{7}{6} x=0 \Rightarrow x=0 \tag{24}
\end{equation*}
$$

Now substitute $x=0$ back to (22) \& (21)

$$
\begin{equation*}
y=0, z=0 \tag{25}
\end{equation*}
$$

Therefore, we have a unique solution of this linear system:

$$
\left\{\begin{array}{l}
x=0 \tag{26}\\
y=0 \\
z=0
\end{array}\right.
$$

(c)

$$
\begin{gather*}
-3 x+2 y-z=14 \tag{27}\\
-x-y-z=0 \tag{28}\\
x+10 y-3 z=2 \tag{29}
\end{gather*}
$$

Let (28) plus (29):

$$
\begin{equation*}
-x-y-z+x+10 y-3 z=2 \Rightarrow 9 y-4 z=2 \Rightarrow z=\frac{9 y-2}{4} \tag{30}
\end{equation*}
$$

Now, let $(28) \times 3$ and plus (27):

$$
\begin{equation*}
3 x+30 y-9 z-3 x+2 y-z=6+14=20 \Rightarrow 32 y-10 z=20 \tag{31}
\end{equation*}
$$

Now, substitute (30) into (31),

$$
\begin{equation*}
32 y-10 \times \frac{9 y-2}{4}=20 \Rightarrow y=\frac{30}{19} \tag{32}
\end{equation*}
$$

Substitute (32) back to (30),

$$
\begin{equation*}
z=\frac{58}{19} \tag{33}
\end{equation*}
$$

Substitute (33) \& (32) into (28),

$$
\begin{equation*}
x=-\frac{88}{19} \tag{34}
\end{equation*}
$$

Therefore, we have a unique solution of this linear system:

$$
\left\{\begin{array}{l}
x=-\frac{88}{19} \tag{35}\\
y=\frac{30}{19} \\
z=\frac{58}{19}
\end{array}\right.
$$

3 Chapter 7.4

Question: An economy has three markets with supply and demand functions for the three goods given by:

$$
\begin{gather*}
q_{1}^{s}=-20+p_{1}-0.5 p_{2} \tag{36}\\
q_{2}^{s}=-100+2 p_{2} \tag{37}\\
q_{3}^{s}=p_{3} \tag{38}\\
 \tag{39}\\
q_{1}^{d}=80-2 p^{1}-p^{3} \tag{40}\\
q_{2}^{d}=200-p_{2} \tag{41}\\
q_{3}^{d}=100-2 p_{3}-p_{1}
\end{gather*}
$$

3.1

Comment on the relationship between the three goods on the demand side.
Hints: From (39), we find that with good 3 price increases, good 1 demand decreases. Similarly, from (41), we find that with good 1 price increases, good 3 demand decreases. We can determine that good 1 and good 3 are complementary goods. (40) shows that demand on good 2 is only determined ny good 2 price, which implies that good 2 is neither substitute nor complement of good 1 and good 3 .

3.2

Solve for the equilibrium prices and quantities of the three goods.
At market equilibrium, we must have,

$$
\begin{gather*}
q_{1}^{s}=q_{1}^{d} \Rightarrow-20+p_{1}-0.5 p_{2}=80-2 p^{1}-p^{3} \Rightarrow 3 p_{1}-0.5 p_{2}-p^{3}=100 \tag{42}\\
q_{2}^{s}=q_{2}^{d} \Rightarrow-100+2 p_{2}=200-p_{2} \Rightarrow 3 p 2=300 \tag{43}\\
q_{3}^{s}=q_{3}^{d} \Rightarrow p_{3}=100-2 p_{3}-p_{1} \Rightarrow p_{1}+3 p_{3}=100 \tag{44}
\end{gather*}
$$

Expressing this in matrix form, we can arrive at the reduced row-echelon form through the following steps:

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
3 & -1 / 2 & 1 & 100 \\
0 & 3 & 0 & 300 \\
1 & 0 & 3 & 100
\end{array}\right] \text { Row } 1 / 3 \& \operatorname{Row} 2 / 3 \Rightarrow\left[\begin{array}{cccc}
1 & -1 / 6 & 1 / 3 & 100 / 3 \\
0 & 1 & 0 & 100 \\
1 & 0 & 3 & 100
\end{array}\right] \text { Row } 1+\text { Row } 2 / 6 \Rightarrow} \\
& {\left[\begin{array}{cccc}
1 & 0 & 1 / 3 & 50 \\
0 & 1 & 0 & 100 \\
1 & 0 & 3 & 100
\end{array}\right] \text { Row } 3-\text { Row } 1 \Rightarrow\left[\begin{array}{cccc}
1 & 0 & 1 / 3 & 50 \\
0 & 1 & 0 & 100 \\
0 & 0 & 10 / 3 & 50
\end{array}\right] \text { Row } 3 \times 3 / 10 \Rightarrow} \\
& {\left[\begin{array}{cccc}
1 & 0 & 1 / 3 & 50 \\
0 & 1 & 0 & 100 \\
0 & 0 & 1 & 75 / 4
\end{array}\right] \text { Row } 1+\text { Row } 3 / 3 \Rightarrow\left[\begin{array}{cccc}
1 & 0 & 0 & 175 / 4 \\
0 & 1 & 0 & 100 \\
0 & 0 & 1 & 75 / 4
\end{array}\right]}
\end{aligned}
$$

Therefore, the equilibrium price for good 1 is $175 / 4$, the equilibrium price for good 2 is $100 \&$ the equilibrium price for good 3 is $75 / 4$.

Now, substitute three equilibrium prices back to $(36),(37) \&(38)$, we can calculate the equilibrium quantities.

