Lab 6 Solutions PARTS

February 17, 2017

1 Chapter 8.5

Question: Let

$$
A=\left[\begin{array}{cc}
3 & -4 \\
-5 & 1
\end{array}\right], B=\left[\begin{array}{ll}
7 & 4 \\
5 & k
\end{array}\right]
$$

What values of k, if any, will make $A B=B A$?
Hints:

$$
\begin{aligned}
A B & =\left[\begin{array}{cc}
3 & -4 \\
-5 & 1
\end{array}\right] *\left[\begin{array}{ll}
7 & 4 \\
5 & k
\end{array}\right]=\left[\begin{array}{cc}
21-20 & 12-4 k \\
-35+5 & -20+k
\end{array}\right]=\left[\begin{array}{cc}
1 & 12-4 k \\
-30 & -20+k
\end{array}\right] \\
B A & =\left[\begin{array}{cc}
7 & 4 \\
5 & k
\end{array}\right] *\left[\begin{array}{cc}
3 & -4 \\
-5 & 1
\end{array}\right]=\left[\begin{array}{cc}
21-20 & -28+4 \\
15-5 k & -20+k
\end{array}\right]=\left[\begin{array}{cc}
1 & -24 \\
15-5 k & -20+k
\end{array}\right]
\end{aligned}
$$

If $A B=B A$, we must have:

$$
\left\{\begin{array}{rl}
12-4 k & =-24 \tag{1}\\
15-5 k & =-30 \\
-20+k & =-20+k
\end{array} \quad \Rightarrow k=9\right.
$$

Thus, $k=9$ gives us $A B=B A$.

2 Chapter 8.6

Question: Compute the quantities below using

$$
A=\left[\begin{array}{cc}
1 & 2 \\
-3 & 4
\end{array}\right], B=\left[\begin{array}{cc}
-8 & 4 \\
-7 & 5
\end{array}\right]
$$

(a) $A^{T}, B^{T}, A^{T}+B^{T},(A+B)^{T}$
(b) $A B,(A B)^{T}, A^{T} B^{T}, B^{T} A^{T}$

Hints:

(a)

$$
\begin{gathered}
A^{T}=\left[\begin{array}{cc}
1 & -3 \\
2 & 4
\end{array}\right] \\
B^{T}=\left[\begin{array}{cc}
-8 & -7 \\
4 & 5
\end{array}\right] \\
A^{T}+B^{T}=\left[\begin{array}{cc}
1-8 & -3-7 \\
2+4 & 4+5
\end{array}\right]=\left[\begin{array}{cc}
-7 & -10 \\
6 & 9
\end{array}\right] \\
(A+B)^{T}=\left[\begin{array}{cc}
1-8 & 2+4 \\
-3-7 & 4+5
\end{array}\right]^{T}=\left[\begin{array}{cc}
-7 & 6 \\
-10 & 9
\end{array}\right]=\left[\begin{array}{cc}
-7 & -10 \\
6 & 9
\end{array}\right]
\end{gathered}
$$

(b)

$$
\begin{gathered}
A B=\left[\begin{array}{cc}
1 & 2 \\
-3 & 4
\end{array}\right] *\left[\begin{array}{cc}
-8 & 4 \\
-7 & 5
\end{array}\right]=\left[\begin{array}{cc}
-8-14 & 4+10 \\
24-28 & -12+20
\end{array}\right]=\left[\begin{array}{cc}
-22 & 14 \\
-4 & 8
\end{array}\right] \\
(A B)^{T}=\left[\begin{array}{cc}
-22 & -4 \\
14 & 8
\end{array}\right] \\
A^{T} B^{T}=\left[\begin{array}{cc}
1 & -3 \\
2 & 4
\end{array}\right] *\left[\begin{array}{cc}
-8 & -7 \\
4 & 5
\end{array}\right]=\left[\begin{array}{cc}
-8-12 & -7-15 \\
-16+16 & -14+20
\end{array}\right]=\left[\begin{array}{cc}
-20 & -22 \\
0 & 6
\end{array}\right] \\
B^{T} A^{T}=\left[\begin{array}{cc}
-8 & -7 \\
4 & 5
\end{array}\right] *\left[\begin{array}{cc}
1 & -3 \\
2 & 4
\end{array}\right]=\left[\begin{array}{cc}
-8-14 & 24-28 \\
4+10 & -12+20
\end{array}\right]=\left[\begin{array}{cc}
-22 & -4 \\
14 & 8
\end{array}\right]
\end{gathered}
$$

3 Chapter 8.8

Question: Use the data in example 8.11 to find the unemployment rate after two periods. [Hint: The unemployment rate is the number of people unemployed as a proportion of all labor market participants.] Can the situation described by these transition probabilities evolve in the same way indefinitely?

Example 8.11: Labor Market Conditions after One Period
Suppose the labor market transition probability matrix is:

$$
P=\left[\begin{array}{ccc}
0.8 & 0.1 & 0.01 \\
0.15 & 0.6 & 0.49 \\
0.05 & 0.3 & 0.5
\end{array}\right]
$$

and the initial distribution of individuals (in millions) is

$$
X^{0}=\left[\begin{array}{c}
10 \\
1 \\
5
\end{array}\right]
$$

Hints: the labor market status vector after one period is:

$$
X^{1}=P X^{0}=\left[\begin{array}{ccc}
0.8 & 0.1 & 0.01 \\
0.15 & 0.6 & 0.49 \\
0.05 & 0.3 & 0.5
\end{array}\right] *\left[\begin{array}{c}
10 \\
1 \\
5
\end{array}\right]=\left[\begin{array}{c}
8.15 \\
4.55 \\
3.3
\end{array}\right]
$$

From textbook ($3^{r d}$ edition) page 286:
"Note that the increase in unemployment comes both from a net reduction in the number of nonparticipants and a reduction in employment. A situation in which an increase in unemployment is accompanied by an increase in participation is referred to as the added-worker effect."
the labor market status vector after two periods is:

$$
X^{2}=P X^{1}=P^{2} X^{0}=\left[\begin{array}{ccc}
0.8 & 0.1 & 0.01 \\
0.15 & 0.6 & 0.49 \\
0.05 & 0.3 & 0.5
\end{array}\right] *\left[\begin{array}{c}
8.15 \\
4.55 \\
3.3
\end{array}\right]=\left[\begin{array}{c}
7.008 \\
5.5695 \\
3.4225
\end{array}\right]
$$

From X^{2}, we find that unemployment still increases and employment still decreases comparing with X^{1}. However, instead of reduction, there is a net increment in the number of nonparticipants.

For more periods evolve situation, Figure 1 shows the detail:

Figure 1

