ECON 3740: INTRODUCTION TO ECONOMETRICS

Instructor: Chaoyi Chen
Department of Economics and Finance, University of Guelph

Lecture 2

Lecture outline

Last lecture, we reviewed the definition of a random variable (both discrete and continuous) and its probability distribution. Today, we will go through

- Measures of the shape of a probability distribution (mean, variance)
- Two random variables and their joint distribution
- Joint distribution, marginal distribution, conditional distribution
- Law of iterated expectations
- Means, variances and covariances of sums of random variables
- Often used probability distributions in econometrics
- Normal, Chi-Squared, Student t and F-distributions

Expected value for a discrete random variable

- The expected value or mean of a random variable is the average value over many repeated trails or occurrences.

Definition: Expected value of a discrete random variable Y with k possible values

$$
E(Y)=\sum_{i=1}^{k} y_{i} P\left(Y=y_{i}\right)=\mu_{y}
$$

- Let random variable G denote number of days it will snow in the next week of January

Probability distribution of G									
Outcome	0	1	2	3	4	5	6	7	
Probability	0.20	0.25	0.20	0.15	0.10	0.05	0.04	0.01	

Question: what is the expected value for the random variable G ?

Expected value for a continuous random variable

Definition: Expected value of a continuous random variable Y (if the domain for y is $(-\infty, \infty)$ and the PDF for y is $f(y))$

$$
E(Y)=\int_{-\infty}^{\infty} y f(y) d y=\mu_{y}
$$

- Let random variable T denote next monday temperature. Suppose the domain for T is $[-10,10]$.

Question: Assuming that T satisfy the uniform distribution with probability density $f(t)=\frac{1}{20}$, what is the expected value for the random variable T ?

The variance for a discrete random variable

- The The variance of a random variable Y is the expected value of the square of the deviation of Y from its mean.

Definition: The variance of a discrete random variable Y with k possible values

$$
\operatorname{Var}(Y)=E\left[\left(Y-\mu_{y}\right)^{2}\right]=\sum_{i=1}^{k}\left(y_{i}-\mu_{y}\right)^{2} P\left(Y=y_{i}\right)=\sigma_{y}^{2}
$$

- Let random variable T denote number of days it will snow in the next week of January

Probability distribution of G									
Outcome	0	1	2	3	4	5	6	7	
Probability	0.20	0.25	0.20	0.15	0.10	0.05	0.04	0.01	

Question: what is the variance for the random variable G ?

The variance for a continuous random variable

Definition: Variance of a continuous random variable Y (if the domain for y is $(-\infty, \infty)$ and the PDF for y is $f(y))$

$$
\operatorname{Var}(Y)=E\left[\left(Y-\mu_{y}\right)^{2}\right]=\int_{-\infty}^{\infty}\left(y-\mu_{y}\right)^{2} f(y) d y=\sigma_{y}^{2}
$$

- Let random variable T denote next monday temperature. Suppose the domain for T is $[-10,10]$.

Question: Assuming that T satisfy the uniform distribution with probability density $f(t)=\frac{1}{20}$, what is the expected value for the random variable T ?

Mean and variance of a Bernoulli random variable

- A Bernoulli random variable is a binary random variable with two possible outcomes, 0 and 1.
- For instance, let B be a random variable which equals 1 if you pass the exam and 0 if you dont pass

$$
B=\left\{\begin{array}{l}
1, \text { with probability } p \\
0, \text { with probability }(1-p)
\end{array}\right.
$$

Question: what is the expected value of B and the variance of B ?

Mean and variance of a linear function of a random variable

Consider two random variables (X, Y) that are related by a linear function

$$
Y=a+b X
$$

- Assume that $E(X)=\mu_{X}$ and $\operatorname{Var}(X)=\sigma_{X}^{2}$

Question: what is the mean and variance for Y ?

Two random variables and their joint distribution

- Many intriguing problems in economics involve 2 or more random variables
- We need to understand the concepts of joint, marginal and conditional probability distribution to solve those problems
Definition: The joint probability distribution of two discrete random variables X, Y is

$$
P(X=x \text { and } Y=y)
$$

An example:

- Let Y equal 1 if it rains and 0 if it does not rain.
- Let X equal 1 if it is humid and 0 if it is not humid.

Joint probability distribution of X and Y			
	humid $(X=1)$	No humid $(X=0)$	Total
Rain $(Y=1)$	0.15	0.07	0.22
No Rain $(Y=0)$	0.15	0.63	0.78
Total	0.3	0.7	1

Two random variables and the marginal distributions

The conditional distribution is the distribution of a random variable conditional on another random variable taking on a specific value.

- The conditional probability that it rains given that it is humid

$$
P(Y=1 \mid X=1)=\frac{P(Y=1, X=1)}{P(X=1)}=\frac{0.15}{0.3}=0.5
$$

- In general, the conditional probability (distribution) of Y given X is

$$
P(Y=y \mid X=x)=\frac{P(Y=y, X=x)}{P(X=x)}
$$

- The conditional expectation of Y given X is

$$
E(Y \mid X=x)=\sum_{i=1}^{k} y_{i} P\left(Y=y_{i} \mid X=x\right)
$$

Question: what is the expected value of rain given that it is humid?

The law of iterated expectations

Law of iterated expectations states that the mean of Y is the weighted average of the conditional expectation of Y given X, weighted by the probability distribution of X.

$$
E(Y)=E[E(Y \mid X)]=\sum_{i=1}^{k} E\left(Y \mid X=x_{i}\right) P\left(X=x_{i}\right)
$$

An example:

- Suppose we are interested in average IQ generally, but we have measures of average IQ by gender.

$E(I Q)=E[E(I Q \mid G)]=E(I Q \mid G=m) P(G=m)+E(I Q \mid G=f) P(G=f)$

Covariance

- The covariance is a measure of the extend to which two random variables X and Y move together

$$
\begin{gathered}
\operatorname{Cov}(\mathrm{X}, \mathrm{Y})=\mathrm{E}\left[\left(\mathrm{X}-_{m} u_{X}\right)\left(Y=\mu_{Y}\right)\right] \\
=\sum_{i=1}^{k} \sum_{j=1}^{\prime}\left(x_{j}-\mu_{X}\right)\left(y_{i}-\mu_{Y}\right) P\left(X=x_{j}, Y=y_{i}\right)
\end{gathered}
$$

- Recall the humidity and rain example

Joint probability distribution of X and Y			
	humid $(X=1)$	No humid $(X=0)$	Total
Rain $(Y=1)$	0.15	0.07	0.22
No Rain $(Y=0)$	0.15	0.63	0.78
Total	0.3	0.7	1

Question: what is the covariance between rain (Y) and humid (X) ?

Correlation

- Why we need correlation? it is units free. Recall that the covariance of X and Y are their units multiplication, which, sometimes, is hard to interpret the size
- The correlation between X and Y is defined as

$$
\operatorname{Corr}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}=\frac{\sigma_{X Y}}{\sigma_{X} \sigma_{Y}}
$$

Properties:

- A correlation is always between -1 and 1 and X and Y are uncorrelated if $\operatorname{Corr}(X, Y)=0$
- If the conditional mean of Y does not depend on X, X and Y are uncorrelated

$$
\text { if } E(Y \mid X)=E(Y) \text {, then } \operatorname{Cov}(X, Y)=0 \& \operatorname{Corr}(X, Y)=0
$$

Question: if X and Y are uncorrelated, does this necessarily imply they are independent?

Means, Variances and covariances of sums of random

 variables- Let $G=a X+b Y$
- Given the $E(X)=\mu_{X}, E(Y)=\mu_{Y}$, what is the mean of G ?
- The variance of G is

$$
\operatorname{Var}(G)=\operatorname{Var}(a X+b Y)=a^{2} \operatorname{Var}(X)+b^{2} \operatorname{Var}(Y)+2 a b \operatorname{Cov}(X, Y)
$$

Please prove above result at home as a practice question.

Some useful results

Means, Variances, and Covariances of Sums of Random Variables

KEY CONCEPT

Let X, Y, and V be random variables, let μ_{X} and σ_{X}^{2} be the mean and variance of X, let $\sigma_{X Y}$ be the covariance between X and Y (and so forth for the other variables), and let a, b, and c be constants. Equations (2.29) through (2.35) follow from the definitions of the mean, variance, and covariance:

$$
\begin{gather*}
E(a+b X+c Y)=a+b \mu_{X}+c \mu_{Y}, \tag{2.29}\\
\operatorname{var}(a+b Y)=b^{2} \sigma_{Y}^{2}, \tag{2.30}\\
\operatorname{var}(a X+b Y)=a^{2} \sigma_{X}^{2}+2 a b \sigma_{X Y}+b^{2} \sigma_{Y}^{2}, \tag{2.31}\\
E\left(Y^{2}\right)=\sigma_{Y}^{2}+\mu_{Y}^{2}, \tag{2.32}\\
\operatorname{cov}(a+b X+c V, Y)=b \sigma_{X Y}+c \sigma_{V Y}, \tag{2.33}\\
E(X Y)=\sigma_{X Y}+\mu_{X} \mu_{Y,} \tag{2.34}\\
|\operatorname{corr}(X, Y)| \leq 1 \text { and }\left|\sigma_{X Y}\right| \leq \sqrt{\sigma_{X}^{2} \sigma_{Y}^{2}} \text { (correlation inequality). } \tag{2.35}
\end{gather*}
$$

Often used probability distributions in Econometrics normal distribution

- The most often used probability density function in econometrics is the Normal (or Gaussian) distribution. The normal distribution is useful because of the central limit theorem. If a random variable $Y \sim N\left(\mu, \sigma^{2}\right)$, then the density function for Y is

$$
f(y)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{(y-\mu)}{\sigma}\right)^{2}}
$$

Often used probability distributions in Econometrics normal distribution - continue

- A standard normal distribution $N(0,1)$ has mean $=0$ and variance $=$ 1
- A random variable with a $N(0,1)$ distribution is denoted by Z and its CDF, $\phi(z)=P(Z \leq z)$, can be found in Z table

TABLE 1 The Cumulative Standard Normal Distribution Function, $\Phi(z)=\operatorname{Pr}(Z \leq z)$										
			$=\operatorname{Pr}(Z \leq z$		Deci					
z	0	1	2	3	4	5	6	7	8	9
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048

Often used probability distributions in Econometrics normal distribution - continue

- Consider a random variable Y, which is normally distributed with mean $=\mu$ and variance $=\sigma^{2}$
- To calculate the probability, we must first standardize Y to get the standard normal variable Z. That is

$$
Z=\frac{(Y-\mu)}{\sigma}
$$

- Then, you can check Z table to look up the probabilities

An example

- Let $Y \sim N(5,2)$

$$
\begin{aligned}
& P(Y \leq 0)=P\left(\frac{(Y-5)}{2} \leq \frac{(0-5)}{2}\right) \\
& \quad=P(Z \leq-2.5)^{2}=0.0062
\end{aligned}
$$

Often used probability distributions in Econometrics -chi-square distribution

- The chi-squared distribution is the distribution of the sum of m squared independent standard normal random variables
- Specifically, let $Z_{1}, Z_{2}, . ., Z_{k}$ be k independent standard normal random variables. Then, the sum of the squares of these random variables forms a chi-squared distribution with k degrees of freedom

$$
\sum_{i=1}^{k} z_{i}^{2} \sim \chi_{k}^{2}
$$

Often used probability distributions in Econometrics -chi-square distribution - continue

- To look up probabilities of a chi-square distribution, you should check chi-square table
- For example $\mathrm{P}\left(\sum_{i=1}^{3} Z_{i}^{2} \leq 7.81\right)=$?

Chi-square Distribution Table

d.f.	.995	.99	.975	.95	.9	.1	.05	.025	.01
1	0.00	0.00	0.00	0.00	0.02	2.71	3.84	5.02	6.63
2	0.01	0.02	0.05	0.10	0.21	4.61	5.99	7.38	9.21
3	0.07	0.11	0.22	0.35	0.58	6.25	7.81	9.35	11.34
4	0.21	0.30	0.48	0.71	1.06	7.78	9.49	11.14	13.28
5	0.41	0.55	0.83	1.15	1.61	9.24	11.07	12.83	15.09
6	0.68	0.87	1.24	1.64	2.20	10.64	12.59	14.45	16.81
7	0.99	1.24	1.69	2.17	2.83	12.02	14.07	16.01	18.48
8	1.34	1.65	2.18	2.73	3.49	13.36	15.51	17.53	20.09
9	1.73	2.09	2.70	3.33	4.17	14.68	16.92	19.02	21.67
10	2.16	2.56	3.25	3.94	4.87	15.99	18.31	20.48	23.21

Often used probability distributions in Econometrics student t distribution

- Let Z be a standard normal random variable and W be a chi-squared distributed random variable with k degree of freedom
- The student t distribution with k degrees of freedom is the distribution with random variable $T=\frac{Z}{\sqrt{W / k}}$

Often used probability distributions in Econometrics student t distribution-continue

- The Student t distribution is often used when testing hypotheses in econometrics
- You can check T table to find the CDF. For example with $k=5$

$$
\mathrm{P}(\mathrm{t} \leq-2.57)=0.025, P(t \geq 2.57)=0.025
$$

t Table

cum. prob	t_{50}	t_{75}	t_{80}	t_{35}	t_{90}	t_{95}	t_{975}	t_{99}	t_{995}	t_{999}	t_{9995}
one-tail	0.50	0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.002	0.001
df											
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599
3	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.000	0.741	0.941	1.100	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869

Often used probability distributions in Econometrics - F distribution

- Let W a chi-squared random variable with k degrees of freedom and V a chi-squared random variable with n degrees of freedom.
- The F-distribution with k and n degrees of freedom Fm;n is the distribution of the random variable $F=\frac{W / k}{V / n}$

Often used probability distributions in Econometrics - F distribution - continue

- Check F table to find the probability
- For example, with $k=4, n=1$,

$$
P(F \geq 4.54)=0.1, P(F \geq 7.71)=0.05
$$

