ECON 3740: INTRODUCTION TO ECONOMETRICS

INSTRUCTOR: CHAOYI CHEN Department of Economics and Finance, University of Guelph

Lecture 3

Instructor: Chaoyi (U. of Guelph))
----------------------	---------------	---

Lecture outline

Last lecture, we reviewed how to measure the shape of a probability distribution, the joint distribution, and some often used probability distributions. Today, we will go through

- Steps in empirical economic analysis
- Data
 - Cross-sectional data
 - Time-series data
 - Pooled cross-sectional data
 - Panel data
- Linear regression with 1 regressor
 - Model Terminologies
 - Graphical illustration
 - The assumptions
 - Ordinary least square estimators derivation

Steps in Empirical Economic Analysis

- What is econometrics?
 - Econometrics = use of statistical methods to analyze economic data
 - Econometricians typically analyze nonexperimental data
- Typical goals of econometric analysis
 - Estimating relationships between economic variables
 - Testing economic theories and hypotheses
 - Forecasting economic variables
 - Evaluating government and business policy
- What is an empirical analysis?
 - An empirical analysis uses data to test a theory or to estimate a relationship.
- Steps for an empirical analysis
 - Step 1: Economic model (this step is often skipped). Examples are Utility Maximization, Profit Maximization, Government Objectives, Political Objectivs.
 - Step 2: Econometric model

Steps in empirical economic analysis: an example from Becker (1968)

- Economic model of criminal activity
 - In a seminal article, Nobel Prize winner Gary Becker postulated a utility maximization framework to describe an individuals participation in crime.

$$y=f(x_1, x_2, x_3, x_4, x_5, x_6, x_7)$$

- where y is hours spent in criminal activities. Check your textbook or the article to identify x₁,..x₇.
- However, economic theory does not specify the functional form (f(.)).
- Econometric model of criminal activity
 - We can assume a linear relationship to specify the functional form.

 $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \beta_5 x_5 + \beta_6 x_6 + \beta_7 x_7 + \mu$

• where μ is unobserved determinants of criminal activity

- Causality: The most important thing you will learn in this class
- Very hard to determine in a non-experimental setting. Examples:
 - Considering maternal smoking and infant birth weight, will the smoking mother give the same weight as the non-smoking mothers?
 - Considering the temperature and CO₂, does more CO₂ lead to higher temperatures or higher temperatures lead to more CO₂?
 - Considering public debt and GDP, does public debt have a positive/negative effect on GDP only or GDP have a positive/negative effect on public debt only or the relationship is bidirectional?

Cross-sectional Data

- Sample of agents taken at one point in time.
- Ideally, the data is a random sample and observations are independent.
- We mainly focus on cross-sectional data in this course!

obsno	country	gpcrgdp	govcons60	second60
1	Argentina	0.89	9	32
2	Austria	3.32	16	50
3	Belgium	2.56	13	69
4	Bolivia	1.24	18	12
12				
1	i.	4		1
61	Zimbabwe	2.30	17	6

• Question are cross-sectional observation independent?

- Time-series Data
 - Repeat observations on specific agents over time. Examples include stock prices, money supply, consumer price index, GDP...

	Minimum Wage, Ur				
obsno	year	avgmin	avgcov	prunemp	prgnp
1	1950	0.20	20.1	15.4	878.7
2	1951	0.21	20.7	16.0	925.0
3	1952	0.23	22.6	14.8	1015.9
2	4	4	1	ą	
			2		
37	1986	3.35	58.1	18.9	4281.6
38	1987	3.35	58.2	16.8	4496.7

• Question are time-series observation independent?

Pooled Cross Sections

- have both cross-sectional and time series features.
- the point of a pooled cross-sectional analysis is often to see how a key relationship has changed over time.

obsno	year	hprice	proptax	sqrft	bdrms	bthrms
1	1993	85,500	42	1600	3	2.0
2	1993	67,300	36	1440	3	2.5
3	1993	134,000	38	2000	4	2.5
- 1				147	4	
1.2						
250	1993	243,600	41	2600	4	3.0
251	1995	65,000	16	1250	2	1.0
252	1995	182,400	20	2200	4	2.0
253	1995	97,500	15	1540	3	2.0
					2	
14	12		20		· · ·	
520	1995	57.200	16	1100	2	1.5

Panel-Data

- Have repeat observations for the same agents in different time periods.
- The key feature of panel data that distinguishes them from a pooled cross section is that the *same* cross-sectional units are followed over a given time period.

ABLE 1.5 A Two-Year Panel Data Set on City Crime Statistics							
obsno	city	year	murders	population	unem	police	
1	1	1986	5	350,000	8.7	440	
2	1	1990	8	359,200	7.2	471	
3	2	1986	2	64,300	5.4	75	
4	2	1990	1	65,100	5.5	75	
	÷			12		2	
297	149	1986	10	260,700	9.6	286	
298	149	1990	6	245,000	9.8	334	
299	150	1986	25	543,000	4.3	520	
300	150	1990	32	546.200	5.2	493	

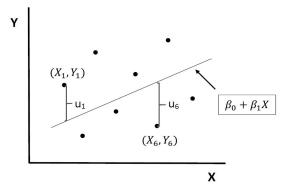
Linear regression with one regressor: terminology

• The linear regression model with one regressor is

$$\mathsf{Y}_i = \beta_0 + \beta_1 X_i + \mu_i$$

- where
 - *Y_i* is the dependent variable/ regressand/ explained variable / LHS variable.
 - X_i is the independent variable / regressor / explanatory variable / RHS variable.
 - μ_i is the error term, or "disturbance" term, which contains all other factors determining _i)
 - β_0 is the intercept of the *population* regression line (expected value of Y when X = 0)
 - β_1 is the slope of the *population* regression line
 - $\beta_0 + \beta_1 X_i$ is the *population* regression line

Linear regression with one regressor: a graphical example



Linear regression with one regressor: assumptions

• The model

$$\mathsf{Y}_i = \beta_0 + \beta_1 X_i + \mu_i$$

• Assumption 1:

 $\mathsf{E}(\mu) = \mathsf{0}$

- Remark 1: This is innocuous as long as we have an intercept in the model.
- Assumption 2:

$$\mathsf{E}(\mu|X) = \mathsf{E}(\mu)$$

• Combined with assumption 1 this gives us

$$\mathsf{E}(\mu|X) = \mathsf{0}$$

- This means that given any x, the value of μ we expect will be 0. In other word, μ is mean independent of X
- Remark 2: This is not necessarily realistic and the hard assumption to satisfy.

Linear regression with one regressor: an example to understand assumptions

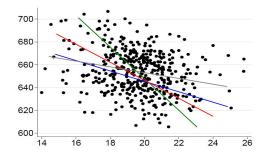
- To see why $E(\mu|X) = 0$ is hard to satisfy, let's consider an example
- A simple wage model relating a persons wage to observed education and other unobserved factors can be characterized as

wage
$$= \beta_0 + \beta_1 \times educ + \mu$$

- where *wage* is measured in dollars per hour and *educ* is years of education.
- To simplify the discussion, we can interpret μ as innate ability (all other innate factors affect wage).
- Then, $E(\mu|X) = 0$ requires that the average level of ability is the same =0, regardless of years of education.
- However, average ability may increase with years of education (Intuitively, people with more ability choose to become more educated), which violates the assumption.

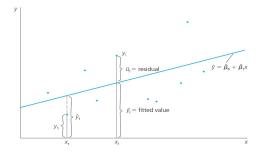
The ordinary least squares estimator (OLS)

- In general we don't know β_0 and β_1 . But, we can estimate them using a random sample of data.
- We just need to find the line that fits the data best. However, the problem is how we define the "best fits" and how we estimate the model based on the definition



The ordinary least squares estimator (OLS)

• Definition for the best fit line: the best fit line should minimize the sum of squared residuals $(\hat{\mu}_i = y_i - \hat{y}_i)$.



The estimators of β_0 and β_1 obtained from above definition are called as *ordinary least square* (OLS) estimator.

The ordinary least squares estimator (OLS)

- The OLS estimator chooses the regression coefficients so that the estimated regression line is as close as possible to the observed data, where closeness is measured by the sum of the squared mistakes made in predicting Y given X
- Let $\hat{eta_0}$ and eta_1 be estimators of eta_0 and eta_1
- Predicted Value

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

Residual

$$\hat{\mu}_i = y_i - \hat{y}_i$$

 Thus, the estimators of the slope and intercept can be obtained by minimizing

$$\min_{\hat{\beta}_0,\hat{\beta}_1}\sum_{i=1}^n \hat{\mu}^2$$

Instructor: Chaoyi (U. of Guelph)

The ordinary least squares estimator (OLS): derivation

• We can rewrite previous objective function as

$$\min_{\hat{\beta}_0,\hat{\beta}_1}\sum_{i=1}^n \left(y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i\right)^2$$

• How we solve for the $\hat{\beta}_0$ and $\hat{\beta}_1$? Take derivatives!

• Differentiate
$$\sum_{i=1}^{n} \left(y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i \right)^2$$
 with respect to β_0 , we have
$$\sum_{i=1}^{n} -2\left(y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i \right) = 0$$

• Divide by -2, then divide by n, we have

$$\frac{1}{n}\sum_{i=1}^{n}\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1}x_{i}\right)=0$$

• Question: to which assumption does this equation correspond?

The ordinary least squares estimator (OLS): derivation

• Similarly, we can Differentiate $\sum_{i=1}^{n} \left(y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i \right)^2$ with respect to β_1 , we have

$$\sum_{i=1}^{n} (-2) x_i \left(y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i \right) = 0$$

• Divide by -2, then divide by *n*, we have

$$\frac{1}{n}\sum_{i=1}^{n}x_{i}\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1}x_{i}\right)=0$$

• Question: to which assumption does this equation correspond?